/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ /* * A third-party license is embedded for some of the code in this file: * The tree layoutHelper implementation was originally copied from * "d3.js"(https://github.com/d3/d3-hierarchy) with * some modifications made for this project. * (see more details in the comment of the specific method below.) * The use of the source code of this file is also subject to the terms * and consitions of the licence of "d3.js" (BSD-3Clause, see * ). */ /** * @file The layout algorithm of node-link tree diagrams. Here we using Reingold-Tilford algorithm to drawing * the tree. */ import * as layout from '../../util/layout'; import { TreeNode } from '../../data/Tree'; import TreeSeriesModel from './TreeSeries'; import ExtensionAPI from '../../core/ExtensionAPI'; interface HierNode { defaultAncestor: TreeLayoutNode, ancestor: TreeLayoutNode, prelim: number, modifier: number, change: number, shift: number, i: number, thread: TreeLayoutNode } export interface TreeLayoutNode extends TreeNode { parentNode: TreeLayoutNode hierNode: HierNode children: TreeLayoutNode[] } /** * Initialize all computational message for following algorithm. */ export function init(inRoot: TreeNode) { const root = inRoot as TreeLayoutNode; root.hierNode = { defaultAncestor: null, ancestor: root, prelim: 0, modifier: 0, change: 0, shift: 0, i: 0, thread: null }; const nodes = [root]; let node; let children; while (node = nodes.pop()) { // jshint ignore:line children = node.children; if (node.isExpand && children.length) { const n = children.length; for (let i = n - 1; i >= 0; i--) { const child = children[i]; child.hierNode = { defaultAncestor: null, ancestor: child, prelim: 0, modifier: 0, change: 0, shift: 0, i: i, thread: null }; nodes.push(child); } } } } /** * The implementation of this function was originally copied from "d3.js" * * with some modifications made for this program. * See the license statement at the head of this file. * * Computes a preliminary x coordinate for node. Before that, this function is * applied recursively to the children of node, as well as the function * apportion(). After spacing out the children by calling executeShifts(), the * node is placed to the midpoint of its outermost children. */ export function firstWalk(node: TreeLayoutNode, separation: SeparationFunc) { const children = node.isExpand ? node.children : []; const siblings = node.parentNode.children; const subtreeW = node.hierNode.i ? siblings[node.hierNode.i - 1] : null; if (children.length) { executeShifts(node); const midPoint = (children[0].hierNode.prelim + children[children.length - 1].hierNode.prelim) / 2; if (subtreeW) { node.hierNode.prelim = subtreeW.hierNode.prelim + separation(node, subtreeW); node.hierNode.modifier = node.hierNode.prelim - midPoint; } else { node.hierNode.prelim = midPoint; } } else if (subtreeW) { node.hierNode.prelim = subtreeW.hierNode.prelim + separation(node, subtreeW); } node.parentNode.hierNode.defaultAncestor = apportion( node, subtreeW, node.parentNode.hierNode.defaultAncestor || siblings[0], separation ); } /** * The implementation of this function was originally copied from "d3.js" * * with some modifications made for this program. * See the license statement at the head of this file. * * Computes all real x-coordinates by summing up the modifiers recursively. */ export function secondWalk(node: TreeLayoutNode) { const nodeX = node.hierNode.prelim + node.parentNode.hierNode.modifier; node.setLayout({x: nodeX}, true); node.hierNode.modifier += node.parentNode.hierNode.modifier; } export function separation(cb?: SeparationFunc) { return arguments.length ? cb : defaultSeparation; } /** * Transform the common coordinate to radial coordinate. */ export function radialCoordinate(rad: number, r: number) { rad -= Math.PI / 2; return { x: r * Math.cos(rad), y: r * Math.sin(rad) }; } /** * Get the layout position of the whole view. */ export function getViewRect(seriesModel: TreeSeriesModel, api: ExtensionAPI) { return layout.getLayoutRect( seriesModel.getBoxLayoutParams(), { width: api.getWidth(), height: api.getHeight() } ); } /** * All other shifts, applied to the smaller subtrees between w- and w+, are * performed by this function. * * The implementation of this function was originally copied from "d3.js" * * with some modifications made for this program. * See the license statement at the head of this file. */ function executeShifts(node: TreeLayoutNode) { const children = node.children; let n = children.length; let shift = 0; let change = 0; while (--n >= 0) { const child = children[n]; child.hierNode.prelim += shift; child.hierNode.modifier += shift; change += child.hierNode.change; shift += child.hierNode.shift + change; } } /** * The implementation of this function was originally copied from "d3.js" * * with some modifications made for this program. * See the license statement at the head of this file. * * The core of the algorithm. Here, a new subtree is combined with the * previous subtrees. Threads are used to traverse the inside and outside * contours of the left and right subtree up to the highest common level. * Whenever two nodes of the inside contours conflict, we compute the left * one of the greatest uncommon ancestors using the function nextAncestor() * and call moveSubtree() to shift the subtree and prepare the shifts of * smaller subtrees. Finally, we add a new thread (if necessary). */ function apportion( subtreeV: TreeLayoutNode, subtreeW: TreeLayoutNode, ancestor: TreeLayoutNode, separation: SeparationFunc ): TreeLayoutNode { if (subtreeW) { let nodeOutRight = subtreeV; let nodeInRight = subtreeV; let nodeOutLeft = nodeInRight.parentNode.children[0]; let nodeInLeft = subtreeW; let sumOutRight = nodeOutRight.hierNode.modifier; let sumInRight = nodeInRight.hierNode.modifier; let sumOutLeft = nodeOutLeft.hierNode.modifier; let sumInLeft = nodeInLeft.hierNode.modifier; while (nodeInLeft = nextRight(nodeInLeft), nodeInRight = nextLeft(nodeInRight), nodeInLeft && nodeInRight) { nodeOutRight = nextRight(nodeOutRight); nodeOutLeft = nextLeft(nodeOutLeft); nodeOutRight.hierNode.ancestor = subtreeV; const shift = nodeInLeft.hierNode.prelim + sumInLeft - nodeInRight.hierNode.prelim - sumInRight + separation(nodeInLeft, nodeInRight); if (shift > 0) { moveSubtree(nextAncestor(nodeInLeft, subtreeV, ancestor), subtreeV, shift); sumInRight += shift; sumOutRight += shift; } sumInLeft += nodeInLeft.hierNode.modifier; sumInRight += nodeInRight.hierNode.modifier; sumOutRight += nodeOutRight.hierNode.modifier; sumOutLeft += nodeOutLeft.hierNode.modifier; } if (nodeInLeft && !nextRight(nodeOutRight)) { nodeOutRight.hierNode.thread = nodeInLeft; nodeOutRight.hierNode.modifier += sumInLeft - sumOutRight; } if (nodeInRight && !nextLeft(nodeOutLeft)) { nodeOutLeft.hierNode.thread = nodeInRight; nodeOutLeft.hierNode.modifier += sumInRight - sumOutLeft; ancestor = subtreeV; } } return ancestor; } /** * This function is used to traverse the right contour of a subtree. * It returns the rightmost child of node or the thread of node. The function * returns null if and only if node is on the highest depth of its subtree. */ function nextRight(node: TreeLayoutNode): TreeLayoutNode { const children = node.children; return children.length && node.isExpand ? children[children.length - 1] : node.hierNode.thread; } /** * This function is used to traverse the left contour of a subtree (or a subforest). * It returns the leftmost child of node or the thread of node. The function * returns null if and only if node is on the highest depth of its subtree. */ function nextLeft(node: TreeLayoutNode) { const children = node.children; return children.length && node.isExpand ? children[0] : node.hierNode.thread; } /** * If nodeInLeft’s ancestor is a sibling of node, returns nodeInLeft’s ancestor. * Otherwise, returns the specified ancestor. */ function nextAncestor( nodeInLeft: TreeLayoutNode, node: TreeLayoutNode, ancestor: TreeLayoutNode ): TreeLayoutNode { return nodeInLeft.hierNode.ancestor.parentNode === node.parentNode ? nodeInLeft.hierNode.ancestor : ancestor; } /** * The implementation of this function was originally copied from "d3.js" * * with some modifications made for this program. * See the license statement at the head of this file. * * Shifts the current subtree rooted at wr. * This is done by increasing prelim(w+) and modifier(w+) by shift. */ function moveSubtree( wl: TreeLayoutNode, wr: TreeLayoutNode, shift: number ) { const change = shift / (wr.hierNode.i - wl.hierNode.i); wr.hierNode.change -= change; wr.hierNode.shift += shift; wr.hierNode.modifier += shift; wr.hierNode.prelim += shift; wl.hierNode.change += change; } /** * The implementation of this function was originally copied from "d3.js" * * with some modifications made for this program. * See the license statement at the head of this file. */ function defaultSeparation(node1: TreeLayoutNode, node2: TreeLayoutNode): number { return node1.parentNode === node2.parentNode ? 1 : 2; } interface SeparationFunc { (node1: TreeLayoutNode, node2: TreeLayoutNode): number }