/*! * GSAP 3.12.2 * https://greensock.com * * @license Copyright 2008-2023, GreenSock. All rights reserved. * Subject to the terms at https://greensock.com/standard-license or for * Club GreenSock members, the agreement issued with that membership. * @author: Jack Doyle, jack@greensock.com */ /* eslint-disable */ let _config = { autoSleep: 120, force3D: "auto", nullTargetWarn: 1, units: {lineHeight:""} }, _defaults = { duration: .5, overwrite: false, delay: 0 }, _suppressOverwrites, _reverting, _context, _bigNum = 1e8, _tinyNum = 1 / _bigNum, _2PI = Math.PI * 2, _HALF_PI = _2PI / 4, _gsID = 0, _sqrt = Math.sqrt, _cos = Math.cos, _sin = Math.sin, _isString = value => typeof(value) === "string", _isFunction = value => typeof(value) === "function", _isNumber = value => typeof(value) === "number", _isUndefined = value => typeof(value) === "undefined", _isObject = value => typeof(value) === "object", _isNotFalse = value => value !== false, _windowExists = () => typeof(window) !== "undefined", _isFuncOrString = value => _isFunction(value) || _isString(value), _isTypedArray = (typeof ArrayBuffer === "function" && ArrayBuffer.isView) || function() {}, // note: IE10 has ArrayBuffer, but NOT ArrayBuffer.isView(). _isArray = Array.isArray, _strictNumExp = /(?:-?\.?\d|\.)+/gi, //only numbers (including negatives and decimals) but NOT relative values. _numExp = /[-+=.]*\d+[.e\-+]*\d*[e\-+]*\d*/g, //finds any numbers, including ones that start with += or -=, negative numbers, and ones in scientific notation like 1e-8. _numWithUnitExp = /[-+=.]*\d+[.e-]*\d*[a-z%]*/g, _complexStringNumExp = /[-+=.]*\d+\.?\d*(?:e-|e\+)?\d*/gi, //duplicate so that while we're looping through matches from exec(), it doesn't contaminate the lastIndex of _numExp which we use to search for colors too. _relExp = /[+-]=-?[.\d]+/, _delimitedValueExp = /[^,'"\[\]\s]+/gi, // previously /[#\-+.]*\b[a-z\d\-=+%.]+/gi but didn't catch special characters. _unitExp = /^[+\-=e\s\d]*\d+[.\d]*([a-z]*|%)\s*$/i, _globalTimeline, _win, _coreInitted, _doc, _globals = {}, _installScope = {}, _coreReady, _install = scope => (_installScope = _merge(scope, _globals)) && gsap, _missingPlugin = (property, value) => console.warn("Invalid property", property, "set to", value, "Missing plugin? gsap.registerPlugin()"), _warn = (message, suppress) => !suppress && console.warn(message), _addGlobal = (name, obj) => (name && (_globals[name] = obj) && (_installScope && (_installScope[name] = obj))) || _globals, _emptyFunc = () => 0, _startAtRevertConfig = {suppressEvents: true, isStart: true, kill: false}, _revertConfigNoKill = {suppressEvents: true, kill: false}, _revertConfig = {suppressEvents: true}, _reservedProps = {}, _lazyTweens = [], _lazyLookup = {}, _lastRenderedFrame, _plugins = {}, _effects = {}, _nextGCFrame = 30, _harnessPlugins = [], _callbackNames = "", _harness = targets => { let target = targets[0], harnessPlugin, i; _isObject(target) || _isFunction(target) || (targets = [targets]); if (!(harnessPlugin = (target._gsap || {}).harness)) { // find the first target with a harness. We assume targets passed into an animation will be of similar type, meaning the same kind of harness can be used for them all (performance optimization) i = _harnessPlugins.length; while (i-- && !_harnessPlugins[i].targetTest(target)) { } harnessPlugin = _harnessPlugins[i]; } i = targets.length; while (i--) { (targets[i] && (targets[i]._gsap || (targets[i]._gsap = new GSCache(targets[i], harnessPlugin)))) || targets.splice(i, 1); } return targets; }, _getCache = target => target._gsap || _harness(toArray(target))[0]._gsap, _getProperty = (target, property, v) => (v = target[property]) && _isFunction(v) ? target[property]() : (_isUndefined(v) && target.getAttribute && target.getAttribute(property)) || v, _forEachName = (names, func) => ((names = names.split(",")).forEach(func)) || names, //split a comma-delimited list of names into an array, then run a forEach() function and return the split array (this is just a way to consolidate/shorten some code). _round = value => Math.round(value * 100000) / 100000 || 0, _roundPrecise = value => Math.round(value * 10000000) / 10000000 || 0, // increased precision mostly for timing values. _parseRelative = (start, value) => { let operator = value.charAt(0), end = parseFloat(value.substr(2)); start = parseFloat(start); return operator === "+" ? start + end : operator === "-" ? start - end : operator === "*" ? start * end : start / end; }, _arrayContainsAny = (toSearch, toFind) => { //searches one array to find matches for any of the items in the toFind array. As soon as one is found, it returns true. It does NOT return all the matches; it's simply a boolean search. let l = toFind.length, i = 0; for (; toSearch.indexOf(toFind[i]) < 0 && ++i < l;) { } return (i < l); }, _lazyRender = () => { let l = _lazyTweens.length, a = _lazyTweens.slice(0), i, tween; _lazyLookup = {}; _lazyTweens.length = 0; for (i = 0; i < l; i++) { tween = a[i]; tween && tween._lazy && (tween.render(tween._lazy[0], tween._lazy[1], true)._lazy = 0); } }, _lazySafeRender = (animation, time, suppressEvents, force) => { _lazyTweens.length && !_reverting && _lazyRender(); animation.render(time, suppressEvents, force || (_reverting && time < 0 && (animation._initted || animation._startAt))); _lazyTweens.length && !_reverting && _lazyRender(); //in case rendering caused any tweens to lazy-init, we should render them because typically when someone calls seek() or time() or progress(), they expect an immediate render. }, _numericIfPossible = value => { let n = parseFloat(value); return (n || n === 0) && (value + "").match(_delimitedValueExp).length < 2 ? n : _isString(value) ? value.trim() : value; }, _passThrough = p => p, _setDefaults = (obj, defaults) => { for (let p in defaults) { (p in obj) || (obj[p] = defaults[p]); } return obj; }, _setKeyframeDefaults = excludeDuration => (obj, defaults) => { for (let p in defaults) { (p in obj) || (p === "duration" && excludeDuration) || p === "ease" || (obj[p] = defaults[p]); } }, _merge = (base, toMerge) => { for (let p in toMerge) { base[p] = toMerge[p]; } return base; }, _mergeDeep = (base, toMerge) => { for (let p in toMerge) { p !== "__proto__" && p !== "constructor" && p !== "prototype" && (base[p] = _isObject(toMerge[p]) ? _mergeDeep(base[p] || (base[p] = {}), toMerge[p]) : toMerge[p]); } return base; }, _copyExcluding = (obj, excluding) => { let copy = {}, p; for (p in obj) { (p in excluding) || (copy[p] = obj[p]); } return copy; }, _inheritDefaults = vars => { let parent = vars.parent || _globalTimeline, func = vars.keyframes ? _setKeyframeDefaults(_isArray(vars.keyframes)) : _setDefaults; if (_isNotFalse(vars.inherit)) { while (parent) { func(vars, parent.vars.defaults); parent = parent.parent || parent._dp; } } return vars; }, _arraysMatch = (a1, a2) => { let i = a1.length, match = i === a2.length; while (match && i-- && a1[i] === a2[i]) { } return i < 0; }, _addLinkedListItem = (parent, child, firstProp = "_first", lastProp = "_last", sortBy) => { let prev = parent[lastProp], t; if (sortBy) { t = child[sortBy]; while (prev && prev[sortBy] > t) { prev = prev._prev; } } if (prev) { child._next = prev._next; prev._next = child; } else { child._next = parent[firstProp]; parent[firstProp] = child; } if (child._next) { child._next._prev = child; } else { parent[lastProp] = child; } child._prev = prev; child.parent = child._dp = parent; return child; }, _removeLinkedListItem = (parent, child, firstProp = "_first", lastProp = "_last") => { let prev = child._prev, next = child._next; if (prev) { prev._next = next; } else if (parent[firstProp] === child) { parent[firstProp] = next; } if (next) { next._prev = prev; } else if (parent[lastProp] === child) { parent[lastProp] = prev; } child._next = child._prev = child.parent = null; // don't delete the _dp just so we can revert if necessary. But parent should be null to indicate the item isn't in a linked list. }, _removeFromParent = (child, onlyIfParentHasAutoRemove) => { child.parent && (!onlyIfParentHasAutoRemove || child.parent.autoRemoveChildren) && child.parent.remove && child.parent.remove(child); child._act = 0; }, _uncache = (animation, child) => { if (animation && (!child || child._end > animation._dur || child._start < 0)) { // performance optimization: if a child animation is passed in we should only uncache if that child EXTENDS the animation (its end time is beyond the end) let a = animation; while (a) { a._dirty = 1; a = a.parent; } } return animation; }, _recacheAncestors = animation => { let parent = animation.parent; while (parent && parent.parent) { //sometimes we must force a re-sort of all children and update the duration/totalDuration of all ancestor timelines immediately in case, for example, in the middle of a render loop, one tween alters another tween's timeScale which shoves its startTime before 0, forcing the parent timeline to shift around and shiftChildren() which could affect that next tween's render (startTime). Doesn't matter for the root timeline though. parent._dirty = 1; parent.totalDuration(); parent = parent.parent; } return animation; }, _rewindStartAt = (tween, totalTime, suppressEvents, force) => tween._startAt && (_reverting ? tween._startAt.revert(_revertConfigNoKill) : (tween.vars.immediateRender && !tween.vars.autoRevert) || tween._startAt.render(totalTime, true, force)), _hasNoPausedAncestors = animation => !animation || (animation._ts && _hasNoPausedAncestors(animation.parent)), _elapsedCycleDuration = animation => animation._repeat ? _animationCycle(animation._tTime, (animation = animation.duration() + animation._rDelay)) * animation : 0, // feed in the totalTime and cycleDuration and it'll return the cycle (iteration minus 1) and if the playhead is exactly at the very END, it will NOT bump up to the next cycle. _animationCycle = (tTime, cycleDuration) => { let whole = Math.floor(tTime /= cycleDuration); return tTime && (whole === tTime) ? whole - 1 : whole; }, _parentToChildTotalTime = (parentTime, child) => (parentTime - child._start) * child._ts + (child._ts >= 0 ? 0 : (child._dirty ? child.totalDuration() : child._tDur)), _setEnd = animation => (animation._end = _roundPrecise(animation._start + ((animation._tDur / Math.abs(animation._ts || animation._rts || _tinyNum)) || 0))), _alignPlayhead = (animation, totalTime) => { // adjusts the animation's _start and _end according to the provided totalTime (only if the parent's smoothChildTiming is true and the animation isn't paused). It doesn't do any rendering or forcing things back into parent timelines, etc. - that's what totalTime() is for. let parent = animation._dp; if (parent && parent.smoothChildTiming && animation._ts) { animation._start = _roundPrecise(parent._time - (animation._ts > 0 ? totalTime / animation._ts : ((animation._dirty ? animation.totalDuration() : animation._tDur) - totalTime) / -animation._ts)); _setEnd(animation); parent._dirty || _uncache(parent, animation); //for performance improvement. If the parent's cache is already dirty, it already took care of marking the ancestors as dirty too, so skip the function call here. } return animation; }, /* _totalTimeToTime = (clampedTotalTime, duration, repeat, repeatDelay, yoyo) => { let cycleDuration = duration + repeatDelay, time = _round(clampedTotalTime % cycleDuration); if (time > duration) { time = duration; } return (yoyo && (~~(clampedTotalTime / cycleDuration) & 1)) ? duration - time : time; }, */ _postAddChecks = (timeline, child) => { let t; if (child._time || (!child._dur && child._initted) || (child._start < timeline._time && (child._dur || !child.add))) { // in case, for example, the _start is moved on a tween that has already rendered, or if it's being inserted into a timeline BEFORE where the playhead is currently. Imagine it's at its end state, then the startTime is moved WAY later (after the end of this timeline), it should render at its beginning. Special case: if it's a timeline (has .add() method) and no duration, we can skip rendering because the user may be populating it AFTER adding it to a parent timeline (unconventional, but possible, and we wouldn't want it to get removed if the parent's autoRemoveChildren is true). t = _parentToChildTotalTime(timeline.rawTime(), child); if (!child._dur || _clamp(0, child.totalDuration(), t) - child._tTime > _tinyNum) { child.render(t, true); } } //if the timeline has already ended but the inserted tween/timeline extends the duration, we should enable this timeline again so that it renders properly. We should also align the playhead with the parent timeline's when appropriate. if (_uncache(timeline, child)._dp && timeline._initted && timeline._time >= timeline._dur && timeline._ts) { //in case any of the ancestors had completed but should now be enabled... if (timeline._dur < timeline.duration()) { t = timeline; while (t._dp) { (t.rawTime() >= 0) && t.totalTime(t._tTime); //moves the timeline (shifts its startTime) if necessary, and also enables it. If it's currently zero, though, it may not be scheduled to render until later so there's no need to force it to align with the current playhead position. Only move to catch up with the playhead. t = t._dp; } } timeline._zTime = -_tinyNum; // helps ensure that the next render() will be forced (crossingStart = true in render()), even if the duration hasn't changed (we're adding a child which would need to get rendered). Definitely an edge case. Note: we MUST do this AFTER the loop above where the totalTime() might trigger a render() because this _addToTimeline() method gets called from the Animation constructor, BEFORE tweens even record their targets, etc. so we wouldn't want things to get triggered in the wrong order. } }, _addToTimeline = (timeline, child, position, skipChecks) => { child.parent && _removeFromParent(child); child._start = _roundPrecise((_isNumber(position) ? position : position || timeline !== _globalTimeline ? _parsePosition(timeline, position, child) : timeline._time) + child._delay); child._end = _roundPrecise(child._start + ((child.totalDuration() / Math.abs(child.timeScale())) || 0)); _addLinkedListItem(timeline, child, "_first", "_last", timeline._sort ? "_start" : 0); _isFromOrFromStart(child) || (timeline._recent = child); skipChecks || _postAddChecks(timeline, child); timeline._ts < 0 && _alignPlayhead(timeline, timeline._tTime); // if the timeline is reversed and the new child makes it longer, we may need to adjust the parent's _start (push it back) return timeline; }, _scrollTrigger = (animation, trigger) => (_globals.ScrollTrigger || _missingPlugin("scrollTrigger", trigger)) && _globals.ScrollTrigger.create(trigger, animation), _attemptInitTween = (tween, time, force, suppressEvents, tTime) => { _initTween(tween, time, tTime); if (!tween._initted) { return 1; } if (!force && tween._pt && !_reverting && ((tween._dur && tween.vars.lazy !== false) || (!tween._dur && tween.vars.lazy)) && _lastRenderedFrame !== _ticker.frame) { _lazyTweens.push(tween); tween._lazy = [tTime, suppressEvents]; return 1; } }, _parentPlayheadIsBeforeStart = ({parent}) => parent && parent._ts && parent._initted && !parent._lock && (parent.rawTime() < 0 || _parentPlayheadIsBeforeStart(parent)), // check parent's _lock because when a timeline repeats/yoyos and does its artificial wrapping, we shouldn't force the ratio back to 0 _isFromOrFromStart = ({data}) => data === "isFromStart" || data === "isStart", _renderZeroDurationTween = (tween, totalTime, suppressEvents, force) => { let prevRatio = tween.ratio, ratio = totalTime < 0 || (!totalTime && ((!tween._start && _parentPlayheadIsBeforeStart(tween) && !(!tween._initted && _isFromOrFromStart(tween))) || ((tween._ts < 0 || tween._dp._ts < 0) && !_isFromOrFromStart(tween)))) ? 0 : 1, // if the tween or its parent is reversed and the totalTime is 0, we should go to a ratio of 0. Edge case: if a from() or fromTo() stagger tween is placed later in a timeline, the "startAt" zero-duration tween could initially render at a time when the parent timeline's playhead is technically BEFORE where this tween is, so make sure that any "from" and "fromTo" startAt tweens are rendered the first time at a ratio of 1. repeatDelay = tween._rDelay, tTime = 0, pt, iteration, prevIteration; if (repeatDelay && tween._repeat) { // in case there's a zero-duration tween that has a repeat with a repeatDelay tTime = _clamp(0, tween._tDur, totalTime); iteration = _animationCycle(tTime, repeatDelay); tween._yoyo && (iteration & 1) && (ratio = 1 - ratio); if (iteration !== _animationCycle(tween._tTime, repeatDelay)) { // if iteration changed prevRatio = 1 - ratio; tween.vars.repeatRefresh && tween._initted && tween.invalidate(); } } if (ratio !== prevRatio || _reverting || force || tween._zTime === _tinyNum || (!totalTime && tween._zTime)) { if (!tween._initted && _attemptInitTween(tween, totalTime, force, suppressEvents, tTime)) { // if we render the very beginning (time == 0) of a fromTo(), we must force the render (normal tweens wouldn't need to render at a time of 0 when the prevTime was also 0). This is also mandatory to make sure overwriting kicks in immediately. return; } prevIteration = tween._zTime; tween._zTime = totalTime || (suppressEvents ? _tinyNum : 0); // when the playhead arrives at EXACTLY time 0 (right on top) of a zero-duration tween, we need to discern if events are suppressed so that when the playhead moves again (next time), it'll trigger the callback. If events are NOT suppressed, obviously the callback would be triggered in this render. Basically, the callback should fire either when the playhead ARRIVES or LEAVES this exact spot, not both. Imagine doing a timeline.seek(0) and there's a callback that sits at 0. Since events are suppressed on that seek() by default, nothing will fire, but when the playhead moves off of that position, the callback should fire. This behavior is what people intuitively expect. suppressEvents || (suppressEvents = totalTime && !prevIteration); // if it was rendered previously at exactly 0 (_zTime) and now the playhead is moving away, DON'T fire callbacks otherwise they'll seem like duplicates. tween.ratio = ratio; tween._from && (ratio = 1 - ratio); tween._time = 0; tween._tTime = tTime; pt = tween._pt; while (pt) { pt.r(ratio, pt.d); pt = pt._next; } totalTime < 0 && _rewindStartAt(tween, totalTime, suppressEvents, true); tween._onUpdate && !suppressEvents && _callback(tween, "onUpdate"); tTime && tween._repeat && !suppressEvents && tween.parent && _callback(tween, "onRepeat"); if ((totalTime >= tween._tDur || totalTime < 0) && tween.ratio === ratio) { ratio && _removeFromParent(tween, 1); if (!suppressEvents && !_reverting) { _callback(tween, (ratio ? "onComplete" : "onReverseComplete"), true); tween._prom && tween._prom(); } } } else if (!tween._zTime) { tween._zTime = totalTime; } }, _findNextPauseTween = (animation, prevTime, time) => { let child; if (time > prevTime) { child = animation._first; while (child && child._start <= time) { if (child.data === "isPause" && child._start > prevTime) { return child; } child = child._next; } } else { child = animation._last; while (child && child._start >= time) { if (child.data === "isPause" && child._start < prevTime) { return child; } child = child._prev; } } }, _setDuration = (animation, duration, skipUncache, leavePlayhead) => { let repeat = animation._repeat, dur = _roundPrecise(duration) || 0, totalProgress = animation._tTime / animation._tDur; totalProgress && !leavePlayhead && (animation._time *= dur / animation._dur); animation._dur = dur; animation._tDur = !repeat ? dur : repeat < 0 ? 1e10 : _roundPrecise(dur * (repeat + 1) + (animation._rDelay * repeat)); totalProgress > 0 && !leavePlayhead && _alignPlayhead(animation, (animation._tTime = animation._tDur * totalProgress)); animation.parent && _setEnd(animation); skipUncache || _uncache(animation.parent, animation); return animation; }, _onUpdateTotalDuration = animation => (animation instanceof Timeline) ? _uncache(animation) : _setDuration(animation, animation._dur), _zeroPosition = {_start:0, endTime:_emptyFunc, totalDuration:_emptyFunc}, _parsePosition = (animation, position, percentAnimation) => { let labels = animation.labels, recent = animation._recent || _zeroPosition, clippedDuration = animation.duration() >= _bigNum ? recent.endTime(false) : animation._dur, //in case there's a child that infinitely repeats, users almost never intend for the insertion point of a new child to be based on a SUPER long value like that so we clip it and assume the most recently-added child's endTime should be used instead. i, offset, isPercent; if (_isString(position) && (isNaN(position) || (position in labels))) { //if the string is a number like "1", check to see if there's a label with that name, otherwise interpret it as a number (absolute value). offset = position.charAt(0); isPercent = position.substr(-1) === "%"; i = position.indexOf("="); if (offset === "<" || offset === ">") { i >= 0 && (position = position.replace(/=/, "")); return (offset === "<" ? recent._start : recent.endTime(recent._repeat >= 0)) + (parseFloat(position.substr(1)) || 0) * (isPercent ? (i < 0 ? recent : percentAnimation).totalDuration() / 100 : 1); } if (i < 0) { (position in labels) || (labels[position] = clippedDuration); return labels[position]; } offset = parseFloat(position.charAt(i-1) + position.substr(i+1)); if (isPercent && percentAnimation) { offset = offset / 100 * (_isArray(percentAnimation) ? percentAnimation[0] : percentAnimation).totalDuration(); } return (i > 1) ? _parsePosition(animation, position.substr(0, i-1), percentAnimation) + offset : clippedDuration + offset; } return (position == null) ? clippedDuration : +position; }, _createTweenType = (type, params, timeline) => { let isLegacy = _isNumber(params[1]), varsIndex = (isLegacy ? 2 : 1) + (type < 2 ? 0 : 1), vars = params[varsIndex], irVars, parent; isLegacy && (vars.duration = params[1]); vars.parent = timeline; if (type) { irVars = vars; parent = timeline; while (parent && !("immediateRender" in irVars)) { // inheritance hasn't happened yet, but someone may have set a default in an ancestor timeline. We could do vars.immediateRender = _isNotFalse(_inheritDefaults(vars).immediateRender) but that'd exact a slight performance penalty because _inheritDefaults() also runs in the Tween constructor. We're paying a small kb price here to gain speed. irVars = parent.vars.defaults || {}; parent = _isNotFalse(parent.vars.inherit) && parent.parent; } vars.immediateRender = _isNotFalse(irVars.immediateRender); type < 2 ? (vars.runBackwards = 1) : (vars.startAt = params[varsIndex - 1]); // "from" vars } return new Tween(params[0], vars, params[varsIndex + 1]); }, _conditionalReturn = (value, func) => value || value === 0 ? func(value) : func, _clamp = (min, max, value) => value < min ? min : value > max ? max : value, getUnit = (value, v) => !_isString(value) || !(v = _unitExp.exec(value)) ? "" : v[1], // note: protect against padded numbers as strings, like "100.100". That shouldn't return "00" as the unit. If it's numeric, return no unit. clamp = (min, max, value) => _conditionalReturn(value, v => _clamp(min, max, v)), _slice = [].slice, _isArrayLike = (value, nonEmpty) => value && (_isObject(value) && "length" in value && ((!nonEmpty && !value.length) || ((value.length - 1) in value && _isObject(value[0]))) && !value.nodeType && value !== _win), _flatten = (ar, leaveStrings, accumulator = []) => ar.forEach(value => (_isString(value) && !leaveStrings) || _isArrayLike(value, 1) ? accumulator.push(...toArray(value)) : accumulator.push(value)) || accumulator, //takes any value and returns an array. If it's a string (and leaveStrings isn't true), it'll use document.querySelectorAll() and convert that to an array. It'll also accept iterables like jQuery objects. toArray = (value, scope, leaveStrings) => _context && !scope && _context.selector ? _context.selector(value) : _isString(value) && !leaveStrings && (_coreInitted || !_wake()) ? _slice.call((scope || _doc).querySelectorAll(value), 0) : _isArray(value) ? _flatten(value, leaveStrings) : _isArrayLike(value) ? _slice.call(value, 0) : value ? [value] : [], selector = value => { value = toArray(value)[0] || _warn("Invalid scope") || {}; return v => { let el = value.current || value.nativeElement || value; return toArray(v, el.querySelectorAll ? el : el === value ? _warn("Invalid scope") || _doc.createElement("div") : value); }; }, shuffle = a => a.sort(() => .5 - Math.random()), // alternative that's a bit faster and more reliably diverse but bigger: for (let j, v, i = a.length; i; j = Math.floor(Math.random() * i), v = a[--i], a[i] = a[j], a[j] = v); return a; //for distributing values across an array. Can accept a number, a function or (most commonly) a function which can contain the following properties: {base, amount, from, ease, grid, axis, length, each}. Returns a function that expects the following parameters: index, target, array. Recognizes the following distribute = v => { if (_isFunction(v)) { return v; } let vars = _isObject(v) ? v : {each:v}, //n:1 is just to indicate v was a number; we leverage that later to set v according to the length we get. If a number is passed in, we treat it like the old stagger value where 0.1, for example, would mean that things would be distributed with 0.1 between each element in the array rather than a total "amount" that's chunked out among them all. ease = _parseEase(vars.ease), from = vars.from || 0, base = parseFloat(vars.base) || 0, cache = {}, isDecimal = (from > 0 && from < 1), ratios = isNaN(from) || isDecimal, axis = vars.axis, ratioX = from, ratioY = from; if (_isString(from)) { ratioX = ratioY = {center:.5, edges:.5, end:1}[from] || 0; } else if (!isDecimal && ratios) { ratioX = from[0]; ratioY = from[1]; } return (i, target, a) => { let l = (a || vars).length, distances = cache[l], originX, originY, x, y, d, j, max, min, wrapAt; if (!distances) { wrapAt = (vars.grid === "auto") ? 0 : (vars.grid || [1, _bigNum])[1]; if (!wrapAt) { max = -_bigNum; while (max < (max = a[wrapAt++].getBoundingClientRect().left) && wrapAt < l) { } wrapAt--; } distances = cache[l] = []; originX = ratios ? (Math.min(wrapAt, l) * ratioX) - .5 : from % wrapAt; originY = wrapAt === _bigNum ? 0 : ratios ? l * ratioY / wrapAt - .5 : (from / wrapAt) | 0; max = 0; min = _bigNum; for (j = 0; j < l; j++) { x = (j % wrapAt) - originX; y = originY - ((j / wrapAt) | 0); distances[j] = d = !axis ? _sqrt(x * x + y * y) : Math.abs((axis === "y") ? y : x); (d > max) && (max = d); (d < min) && (min = d); } (from === "random") && shuffle(distances); distances.max = max - min; distances.min = min; distances.v = l = (parseFloat(vars.amount) || (parseFloat(vars.each) * (wrapAt > l ? l - 1 : !axis ? Math.max(wrapAt, l / wrapAt) : axis === "y" ? l / wrapAt : wrapAt)) || 0) * (from === "edges" ? -1 : 1); distances.b = (l < 0) ? base - l : base; distances.u = getUnit(vars.amount || vars.each) || 0; //unit ease = (ease && l < 0) ? _invertEase(ease) : ease; } l = ((distances[i] - distances.min) / distances.max) || 0; return _roundPrecise(distances.b + (ease ? ease(l) : l) * distances.v) + distances.u; //round in order to work around floating point errors }; }, _roundModifier = v => { //pass in 0.1 get a function that'll round to the nearest tenth, or 5 to round to the closest 5, or 0.001 to the closest 1000th, etc. let p = Math.pow(10, ((v + "").split(".")[1] || "").length); //to avoid floating point math errors (like 24 * 0.1 == 2.4000000000000004), we chop off at a specific number of decimal places (much faster than toFixed()) return raw => { let n = _roundPrecise(Math.round(parseFloat(raw) / v) * v * p); return (n - n % 1) / p + (_isNumber(raw) ? 0 : getUnit(raw)); // n - n % 1 replaces Math.floor() in order to handle negative values properly. For example, Math.floor(-150.00000000000003) is 151! }; }, snap = (snapTo, value) => { let isArray = _isArray(snapTo), radius, is2D; if (!isArray && _isObject(snapTo)) { radius = isArray = snapTo.radius || _bigNum; if (snapTo.values) { snapTo = toArray(snapTo.values); if ((is2D = !_isNumber(snapTo[0]))) { radius *= radius; //performance optimization so we don't have to Math.sqrt() in the loop. } } else { snapTo = _roundModifier(snapTo.increment); } } return _conditionalReturn(value, !isArray ? _roundModifier(snapTo) : _isFunction(snapTo) ? raw => {is2D = snapTo(raw); return Math.abs(is2D - raw) <= radius ? is2D : raw; } : raw => { let x = parseFloat(is2D ? raw.x : raw), y = parseFloat(is2D ? raw.y : 0), min = _bigNum, closest = 0, i = snapTo.length, dx, dy; while (i--) { if (is2D) { dx = snapTo[i].x - x; dy = snapTo[i].y - y; dx = dx * dx + dy * dy; } else { dx = Math.abs(snapTo[i] - x); } if (dx < min) { min = dx; closest = i; } } closest = (!radius || min <= radius) ? snapTo[closest] : raw; return (is2D || closest === raw || _isNumber(raw)) ? closest : closest + getUnit(raw); }); }, random = (min, max, roundingIncrement, returnFunction) => _conditionalReturn(_isArray(min) ? !max : roundingIncrement === true ? !!(roundingIncrement = 0) : !returnFunction, () => _isArray(min) ? min[~~(Math.random() * min.length)] : (roundingIncrement = roundingIncrement || 1e-5) && (returnFunction = roundingIncrement < 1 ? 10 ** ((roundingIncrement + "").length - 2) : 1) && (Math.floor(Math.round((min - roundingIncrement / 2 + Math.random() * (max - min + roundingIncrement * .99)) / roundingIncrement) * roundingIncrement * returnFunction) / returnFunction)), pipe = (...functions) => value => functions.reduce((v, f) => f(v), value), unitize = (func, unit) => value => func(parseFloat(value)) + (unit || getUnit(value)), normalize = (min, max, value) => mapRange(min, max, 0, 1, value), _wrapArray = (a, wrapper, value) => _conditionalReturn(value, index => a[~~wrapper(index)]), wrap = function(min, max, value) { // NOTE: wrap() CANNOT be an arrow function! A very odd compiling bug causes problems (unrelated to GSAP). let range = max - min; return _isArray(min) ? _wrapArray(min, wrap(0, min.length), max) : _conditionalReturn(value, value => ((range + (value - min) % range) % range) + min); }, wrapYoyo = (min, max, value) => { let range = max - min, total = range * 2; return _isArray(min) ? _wrapArray(min, wrapYoyo(0, min.length - 1), max) : _conditionalReturn(value, value => { value = (total + (value - min) % total) % total || 0; return min + ((value > range) ? (total - value) : value); }); }, _replaceRandom = value => { //replaces all occurrences of random(...) in a string with the calculated random value. can be a range like random(-100, 100, 5) or an array like random([0, 100, 500]) let prev = 0, s = "", i, nums, end, isArray; while (~(i = value.indexOf("random(", prev))) { end = value.indexOf(")", i); isArray = value.charAt(i + 7) === "["; nums = value.substr(i + 7, end - i - 7).match(isArray ? _delimitedValueExp : _strictNumExp); s += value.substr(prev, i - prev) + random(isArray ? nums : +nums[0], isArray ? 0 : +nums[1], +nums[2] || 1e-5); prev = end + 1; } return s + value.substr(prev, value.length - prev); }, mapRange = (inMin, inMax, outMin, outMax, value) => { let inRange = inMax - inMin, outRange = outMax - outMin; return _conditionalReturn(value, value => outMin + ((((value - inMin) / inRange) * outRange) || 0)); }, interpolate = (start, end, progress, mutate) => { let func = isNaN(start + end) ? 0 : p => (1 - p) * start + p * end; if (!func) { let isString = _isString(start), master = {}, p, i, interpolators, l, il; progress === true && (mutate = 1) && (progress = null); if (isString) { start = {p: start}; end = {p: end}; } else if (_isArray(start) && !_isArray(end)) { interpolators = []; l = start.length; il = l - 2; for (i = 1; i < l; i++) { interpolators.push(interpolate(start[i-1], start[i])); //build the interpolators up front as a performance optimization so that when the function is called many times, it can just reuse them. } l--; func = p => { p *= l; let i = Math.min(il, ~~p); return interpolators[i](p - i); }; progress = end; } else if (!mutate) { start = _merge(_isArray(start) ? [] : {}, start); } if (!interpolators) { for (p in end) { _addPropTween.call(master, start, p, "get", end[p]); } func = p => _renderPropTweens(p, master) || (isString ? start.p : start); } } return _conditionalReturn(progress, func); }, _getLabelInDirection = (timeline, fromTime, backward) => { //used for nextLabel() and previousLabel() let labels = timeline.labels, min = _bigNum, p, distance, label; for (p in labels) { distance = labels[p] - fromTime; if ((distance < 0) === !!backward && distance && min > (distance = Math.abs(distance))) { label = p; min = distance; } } return label; }, _callback = (animation, type, executeLazyFirst) => { let v = animation.vars, callback = v[type], prevContext = _context, context = animation._ctx, params, scope, result; if (!callback) { return; } params = v[type + "Params"]; scope = v.callbackScope || animation; executeLazyFirst && _lazyTweens.length && _lazyRender(); //in case rendering caused any tweens to lazy-init, we should render them because typically when a timeline finishes, users expect things to have rendered fully. Imagine an onUpdate on a timeline that reports/checks tweened values. context && (_context = context); result = params ? callback.apply(scope, params) : callback.call(scope); _context = prevContext; return result; }, _interrupt = animation => { _removeFromParent(animation); animation.scrollTrigger && animation.scrollTrigger.kill(!!_reverting); animation.progress() < 1 && _callback(animation, "onInterrupt"); return animation; }, _quickTween, _registerPluginQueue = [], _createPlugin = config => { if (_windowExists() && config) { // edge case: some build tools may pass in a null/undefined value config = !config.name && config.default || config; //UMD packaging wraps things oddly, so for example MotionPathHelper becomes {MotionPathHelper:MotionPathHelper, default:MotionPathHelper}. let name = config.name, isFunc = _isFunction(config), Plugin = (name && !isFunc && config.init) ? function () { this._props = []; } : config, //in case someone passes in an object that's not a plugin, like CustomEase instanceDefaults = {init: _emptyFunc, render: _renderPropTweens, add: _addPropTween, kill: _killPropTweensOf, modifier: _addPluginModifier, rawVars: 0}, statics = {targetTest: 0, get: 0, getSetter: _getSetter, aliases: {}, register: 0}; _wake(); if (config !== Plugin) { if (_plugins[name]) { return; } _setDefaults(Plugin, _setDefaults(_copyExcluding(config, instanceDefaults), statics)); //static methods _merge(Plugin.prototype, _merge(instanceDefaults, _copyExcluding(config, statics))); //instance methods _plugins[(Plugin.prop = name)] = Plugin; if (config.targetTest) { _harnessPlugins.push(Plugin); _reservedProps[name] = 1; } name = (name === "css" ? "CSS" : name.charAt(0).toUpperCase() + name.substr(1)) + "Plugin"; //for the global name. "motionPath" should become MotionPathPlugin } _addGlobal(name, Plugin); config.register && config.register(gsap, Plugin, PropTween); } else { config && _registerPluginQueue.push(config); } }, /* * -------------------------------------------------------------------------------------- * COLORS * -------------------------------------------------------------------------------------- */ _255 = 255, _colorLookup = { aqua:[0,_255,_255], lime:[0,_255,0], silver:[192,192,192], black:[0,0,0], maroon:[128,0,0], teal:[0,128,128], blue:[0,0,_255], navy:[0,0,128], white:[_255,_255,_255], olive:[128,128,0], yellow:[_255,_255,0], orange:[_255,165,0], gray:[128,128,128], purple:[128,0,128], green:[0,128,0], red:[_255,0,0], pink:[_255,192,203], cyan:[0,_255,_255], transparent:[_255,_255,_255,0] }, // possible future idea to replace the hard-coded color name values - put this in the ticker.wake() where we set the _doc: // let ctx = _doc.createElement("canvas").getContext("2d"); // _forEachName("aqua,lime,silver,black,maroon,teal,blue,navy,white,olive,yellow,orange,gray,purple,green,red,pink,cyan", color => {ctx.fillStyle = color; _colorLookup[color] = splitColor(ctx.fillStyle)}); _hue = (h, m1, m2) => { h += h < 0 ? 1 : h > 1 ? -1 : 0; return ((((h * 6 < 1) ? m1 + (m2 - m1) * h * 6 : h < .5 ? m2 : (h * 3 < 2) ? m1 + (m2 - m1) * (2 / 3 - h) * 6 : m1) * _255) + .5) | 0; }, splitColor = (v, toHSL, forceAlpha) => { let a = !v ? _colorLookup.black : _isNumber(v) ? [v >> 16, (v >> 8) & _255, v & _255] : 0, r, g, b, h, s, l, max, min, d, wasHSL; if (!a) { if (v.substr(-1) === ",") { //sometimes a trailing comma is included and we should chop it off (typically from a comma-delimited list of values like a textShadow:"2px 2px 2px blue, 5px 5px 5px rgb(255,0,0)" - in this example "blue," has a trailing comma. We could strip it out inside parseComplex() but we'd need to do it to the beginning and ending values plus it wouldn't provide protection from other potential scenarios like if the user passes in a similar value. v = v.substr(0, v.length - 1); } if (_colorLookup[v]) { a = _colorLookup[v]; } else if (v.charAt(0) === "#") { if (v.length < 6) { //for shorthand like #9F0 or #9F0F (could have alpha) r = v.charAt(1); g = v.charAt(2); b = v.charAt(3); v = "#" + r + r + g + g + b + b + (v.length === 5 ? v.charAt(4) + v.charAt(4) : ""); } if (v.length === 9) { // hex with alpha, like #fd5e53ff a = parseInt(v.substr(1, 6), 16); return [a >> 16, (a >> 8) & _255, a & _255, parseInt(v.substr(7), 16) / 255]; } v = parseInt(v.substr(1), 16); a = [v >> 16, (v >> 8) & _255, v & _255]; } else if (v.substr(0, 3) === "hsl") { a = wasHSL = v.match(_strictNumExp); if (!toHSL) { h = (+a[0] % 360) / 360; s = +a[1] / 100; l = +a[2] / 100; g = (l <= .5) ? l * (s + 1) : l + s - l * s; r = l * 2 - g; a.length > 3 && (a[3] *= 1); //cast as number a[0] = _hue(h + 1 / 3, r, g); a[1] = _hue(h, r, g); a[2] = _hue(h - 1 / 3, r, g); } else if (~v.indexOf("=")) { //if relative values are found, just return the raw strings with the relative prefixes in place. a = v.match(_numExp); forceAlpha && a.length < 4 && (a[3] = 1); return a; } } else { a = v.match(_strictNumExp) || _colorLookup.transparent; } a = a.map(Number); } if (toHSL && !wasHSL) { r = a[0] / _255; g = a[1] / _255; b = a[2] / _255; max = Math.max(r, g, b); min = Math.min(r, g, b); l = (max + min) / 2; if (max === min) { h = s = 0; } else { d = max - min; s = l > 0.5 ? d / (2 - max - min) : d / (max + min); h = max === r ? (g - b) / d + (g < b ? 6 : 0) : max === g ? (b - r) / d + 2 : (r - g) / d + 4; h *= 60; } a[0] = ~~(h + .5); a[1] = ~~(s * 100 + .5); a[2] = ~~(l * 100 + .5); } forceAlpha && a.length < 4 && (a[3] = 1); return a; }, _colorOrderData = v => { // strips out the colors from the string, finds all the numeric slots (with units) and returns an array of those. The Array also has a "c" property which is an Array of the index values where the colors belong. This is to help work around issues where there's a mis-matched order of color/numeric data like drop-shadow(#f00 0px 1px 2px) and drop-shadow(0x 1px 2px #f00). This is basically a helper function used in _formatColors() let values = [], c = [], i = -1; v.split(_colorExp).forEach(v => { let a = v.match(_numWithUnitExp) || []; values.push(...a); c.push(i += a.length + 1); }); values.c = c; return values; }, _formatColors = (s, toHSL, orderMatchData) => { let result = "", colors = (s + result).match(_colorExp), type = toHSL ? "hsla(" : "rgba(", i = 0, c, shell, d, l; if (!colors) { return s; } colors = colors.map(color => (color = splitColor(color, toHSL, 1)) && type + (toHSL ? color[0] + "," + color[1] + "%," + color[2] + "%," + color[3] : color.join(",")) + ")"); if (orderMatchData) { d = _colorOrderData(s); c = orderMatchData.c; if (c.join(result) !== d.c.join(result)) { shell = s.replace(_colorExp, "1").split(_numWithUnitExp); l = shell.length - 1; for (; i < l; i++) { result += shell[i] + (~c.indexOf(i) ? colors.shift() || type + "0,0,0,0)" : (d.length ? d : colors.length ? colors : orderMatchData).shift()); } } } if (!shell) { shell = s.split(_colorExp); l = shell.length - 1; for (; i < l; i++) { result += shell[i] + colors[i]; } } return result + shell[l]; }, _colorExp = (function() { let s = "(?:\\b(?:(?:rgb|rgba|hsl|hsla)\\(.+?\\))|\\B#(?:[0-9a-f]{3,4}){1,2}\\b", //we'll dynamically build this Regular Expression to conserve file size. After building it, it will be able to find rgb(), rgba(), # (hexadecimal), and named color values like red, blue, purple, etc., p; for (p in _colorLookup) { s += "|" + p + "\\b"; } return new RegExp(s + ")", "gi"); })(), _hslExp = /hsl[a]?\(/, _colorStringFilter = a => { let combined = a.join(" "), toHSL; _colorExp.lastIndex = 0; if (_colorExp.test(combined)) { toHSL = _hslExp.test(combined); a[1] = _formatColors(a[1], toHSL); a[0] = _formatColors(a[0], toHSL, _colorOrderData(a[1])); // make sure the order of numbers/colors match with the END value. return true; } }, /* * -------------------------------------------------------------------------------------- * TICKER * -------------------------------------------------------------------------------------- */ _tickerActive, _ticker = (function() { let _getTime = Date.now, _lagThreshold = 500, _adjustedLag = 33, _startTime = _getTime(), _lastUpdate = _startTime, _gap = 1000 / 240, _nextTime = _gap, _listeners = [], _id, _req, _raf, _self, _delta, _i, _tick = v => { let elapsed = _getTime() - _lastUpdate, manual = v === true, overlap, dispatch, time, frame; elapsed > _lagThreshold && (_startTime += elapsed - _adjustedLag); _lastUpdate += elapsed; time = _lastUpdate - _startTime; overlap = time - _nextTime; if (overlap > 0 || manual) { frame = ++_self.frame; _delta = time - _self.time * 1000; _self.time = time = time / 1000; _nextTime += overlap + (overlap >= _gap ? 4 : _gap - overlap); dispatch = 1; } manual || (_id = _req(_tick)); //make sure the request is made before we dispatch the "tick" event so that timing is maintained. Otherwise, if processing the "tick" requires a bunch of time (like 15ms) and we're using a setTimeout() that's based on 16.7ms, it'd technically take 31.7ms between frames otherwise. if (dispatch) { for (_i = 0; _i < _listeners.length; _i++) { // use _i and check _listeners.length instead of a variable because a listener could get removed during the loop, and if that happens to an element less than the current index, it'd throw things off in the loop. _listeners[_i](time, _delta, frame, v); } } }; _self = { time:0, frame:0, tick() { _tick(true); }, deltaRatio(fps) { return _delta / (1000 / (fps || 60)); }, wake() { if (_coreReady) { if (!_coreInitted && _windowExists()) { _win = _coreInitted = window; _doc = _win.document || {}; _globals.gsap = gsap; (_win.gsapVersions || (_win.gsapVersions = [])).push(gsap.version); _install(_installScope || _win.GreenSockGlobals || (!_win.gsap && _win) || {}); _raf = _win.requestAnimationFrame; _registerPluginQueue.forEach(_createPlugin); } _id && _self.sleep(); _req = _raf || (f => setTimeout(f, (_nextTime - _self.time * 1000 + 1) | 0)); _tickerActive = 1; _tick(2); } }, sleep() { (_raf ? _win.cancelAnimationFrame : clearTimeout)(_id); _tickerActive = 0; _req = _emptyFunc; }, lagSmoothing(threshold, adjustedLag) { _lagThreshold = threshold || Infinity; // zero should be interpreted as basically unlimited _adjustedLag = Math.min(adjustedLag || 33, _lagThreshold); }, fps(fps) { _gap = 1000 / (fps || 240); _nextTime = _self.time * 1000 + _gap; }, add(callback, once, prioritize) { let func = once ? (t, d, f, v) => {callback(t, d, f, v); _self.remove(func);} : callback; _self.remove(callback); _listeners[prioritize ? "unshift" : "push"](func); _wake(); return func; }, remove(callback, i) { ~(i = _listeners.indexOf(callback)) && _listeners.splice(i, 1) && _i >= i && _i--; }, _listeners:_listeners }; return _self; })(), _wake = () => !_tickerActive && _ticker.wake(), //also ensures the core classes are initialized. /* * ------------------------------------------------- * EASING * ------------------------------------------------- */ _easeMap = {}, _customEaseExp = /^[\d.\-M][\d.\-,\s]/, _quotesExp = /["']/g, _parseObjectInString = value => { //takes a string like "{wiggles:10, type:anticipate})" and turns it into a real object. Notice it ends in ")" and includes the {} wrappers. This is because we only use this function for parsing ease configs and prioritized optimization rather than reusability. let obj = {}, split = value.substr(1, value.length-3).split(":"), key = split[0], i = 1, l = split.length, index, val, parsedVal; for (; i < l; i++) { val = split[i]; index = i !== l-1 ? val.lastIndexOf(",") : val.length; parsedVal = val.substr(0, index); obj[key] = isNaN(parsedVal) ? parsedVal.replace(_quotesExp, "").trim() : +parsedVal; key = val.substr(index+1).trim(); } return obj; }, _valueInParentheses = value => { let open = value.indexOf("(") + 1, close = value.indexOf(")"), nested = value.indexOf("(", open); return value.substring(open, ~nested && nested < close ? value.indexOf(")", close + 1) : close); }, _configEaseFromString = name => { //name can be a string like "elastic.out(1,0.5)", and pass in _easeMap as obj and it'll parse it out and call the actual function like _easeMap.Elastic.easeOut.config(1,0.5). It will also parse custom ease strings as long as CustomEase is loaded and registered (internally as _easeMap._CE). let split = (name + "").split("("), ease = _easeMap[split[0]]; return (ease && split.length > 1 && ease.config) ? ease.config.apply(null, ~name.indexOf("{") ? [_parseObjectInString(split[1])] : _valueInParentheses(name).split(",").map(_numericIfPossible)) : (_easeMap._CE && _customEaseExp.test(name)) ? _easeMap._CE("", name) : ease; }, _invertEase = ease => p => 1 - ease(1 - p), // allow yoyoEase to be set in children and have those affected when the parent/ancestor timeline yoyos. _propagateYoyoEase = (timeline, isYoyo) => { let child = timeline._first, ease; while (child) { if (child instanceof Timeline) { _propagateYoyoEase(child, isYoyo); } else if (child.vars.yoyoEase && (!child._yoyo || !child._repeat) && child._yoyo !== isYoyo) { if (child.timeline) { _propagateYoyoEase(child.timeline, isYoyo); } else { ease = child._ease; child._ease = child._yEase; child._yEase = ease; child._yoyo = isYoyo; } } child = child._next; } }, _parseEase = (ease, defaultEase) => !ease ? defaultEase : (_isFunction(ease) ? ease : _easeMap[ease] || _configEaseFromString(ease)) || defaultEase, _insertEase = (names, easeIn, easeOut = p => 1 - easeIn(1 - p), easeInOut = (p => p < .5 ? easeIn(p * 2) / 2 : 1 - easeIn((1 - p) * 2) / 2)) => { let ease = {easeIn, easeOut, easeInOut}, lowercaseName; _forEachName(names, name => { _easeMap[name] = _globals[name] = ease; _easeMap[(lowercaseName = name.toLowerCase())] = easeOut; for (let p in ease) { _easeMap[lowercaseName + (p === "easeIn" ? ".in" : p === "easeOut" ? ".out" : ".inOut")] = _easeMap[name + "." + p] = ease[p]; } }); return ease; }, _easeInOutFromOut = easeOut => (p => p < .5 ? (1 - easeOut(1 - (p * 2))) / 2 : .5 + easeOut((p - .5) * 2) / 2), _configElastic = (type, amplitude, period) => { let p1 = (amplitude >= 1) ? amplitude : 1, //note: if amplitude is < 1, we simply adjust the period for a more natural feel. Otherwise the math doesn't work right and the curve starts at 1. p2 = (period || (type ? .3 : .45)) / (amplitude < 1 ? amplitude : 1), p3 = p2 / _2PI * (Math.asin(1 / p1) || 0), easeOut = p => p === 1 ? 1 : p1 * (2 ** (-10 * p)) * _sin((p - p3) * p2) + 1, ease = (type === "out") ? easeOut : (type === "in") ? p => 1 - easeOut(1 - p) : _easeInOutFromOut(easeOut); p2 = _2PI / p2; //precalculate to optimize ease.config = (amplitude, period) => _configElastic(type, amplitude, period); return ease; }, _configBack = (type, overshoot = 1.70158) => { let easeOut = p => p ? ((--p) * p * ((overshoot + 1) * p + overshoot) + 1) : 0, ease = type === "out" ? easeOut : type === "in" ? p => 1 - easeOut(1 - p) : _easeInOutFromOut(easeOut); ease.config = overshoot => _configBack(type, overshoot); return ease; }; // a cheaper (kb and cpu) but more mild way to get a parameterized weighted ease by feeding in a value between -1 (easeIn) and 1 (easeOut) where 0 is linear. // _weightedEase = ratio => { // let y = 0.5 + ratio / 2; // return p => (2 * (1 - p) * p * y + p * p); // }, // a stronger (but more expensive kb/cpu) parameterized weighted ease that lets you feed in a value between -1 (easeIn) and 1 (easeOut) where 0 is linear. // _weightedEaseStrong = ratio => { // ratio = .5 + ratio / 2; // let o = 1 / 3 * (ratio < .5 ? ratio : 1 - ratio), // b = ratio - o, // c = ratio + o; // return p => p === 1 ? p : 3 * b * (1 - p) * (1 - p) * p + 3 * c * (1 - p) * p * p + p * p * p; // }; _forEachName("Linear,Quad,Cubic,Quart,Quint,Strong", (name, i) => { let power = i < 5 ? i + 1 : i; _insertEase(name + ",Power" + (power - 1), i ? p => p ** power : p => p, p => 1 - (1 - p) ** power, p => p < .5 ? (p * 2) ** power / 2 : 1 - ((1 - p) * 2) ** power / 2); }); _easeMap.Linear.easeNone = _easeMap.none = _easeMap.Linear.easeIn; _insertEase("Elastic", _configElastic("in"), _configElastic("out"), _configElastic()); ((n, c) => { let n1 = 1 / c, n2 = 2 * n1, n3 = 2.5 * n1, easeOut = p => (p < n1) ? n * p * p : (p < n2) ? n * (p - 1.5 / c) ** 2 + .75 : (p < n3) ? n * (p -= 2.25 / c) * p + .9375 : n * (p - 2.625 / c) ** 2 + .984375; _insertEase("Bounce", p => 1 - easeOut(1 - p), easeOut); })(7.5625, 2.75); _insertEase("Expo", p => p ? 2 ** (10 * (p - 1)) : 0); _insertEase("Circ", p => -(_sqrt(1 - (p * p)) - 1)); _insertEase("Sine", p => p === 1 ? 1 : -_cos(p * _HALF_PI) + 1); _insertEase("Back", _configBack("in"), _configBack("out"), _configBack()); _easeMap.SteppedEase = _easeMap.steps = _globals.SteppedEase = { config(steps = 1, immediateStart) { let p1 = 1 / steps, p2 = steps + (immediateStart ? 0 : 1), p3 = immediateStart ? 1 : 0, max = 1 - _tinyNum; return p => (((p2 * _clamp(0, max, p)) | 0) + p3) * p1; } }; _defaults.ease = _easeMap["quad.out"]; _forEachName("onComplete,onUpdate,onStart,onRepeat,onReverseComplete,onInterrupt", name => _callbackNames += name + "," + name + "Params,"); /* * -------------------------------------------------------------------------------------- * CACHE * -------------------------------------------------------------------------------------- */ export class GSCache { constructor(target, harness) { this.id = _gsID++; target._gsap = this; this.target = target; this.harness = harness; this.get = harness ? harness.get : _getProperty; this.set = harness ? harness.getSetter : _getSetter; } } /* * -------------------------------------------------------------------------------------- * ANIMATION * -------------------------------------------------------------------------------------- */ export class Animation { constructor(vars) { this.vars = vars; this._delay = +vars.delay || 0; if ((this._repeat = vars.repeat === Infinity ? -2 : vars.repeat || 0)) { // TODO: repeat: Infinity on a timeline's children must flag that timeline internally and affect its totalDuration, otherwise it'll stop in the negative direction when reaching the start. this._rDelay = vars.repeatDelay || 0; this._yoyo = !!vars.yoyo || !!vars.yoyoEase; } this._ts = 1; _setDuration(this, +vars.duration, 1, 1); this.data = vars.data; if (_context) { this._ctx = _context; _context.data.push(this); } _tickerActive || _ticker.wake(); } delay(value) { if (value || value === 0) { this.parent && this.parent.smoothChildTiming && (this.startTime(this._start + value - this._delay)); this._delay = value; return this; } return this._delay; } duration(value) { return arguments.length ? this.totalDuration(this._repeat > 0 ? value + (value + this._rDelay) * this._repeat : value) : this.totalDuration() && this._dur; } totalDuration(value) { if (!arguments.length) { return this._tDur; } this._dirty = 0; return _setDuration(this, this._repeat < 0 ? value : (value - (this._repeat * this._rDelay)) / (this._repeat + 1)); } totalTime(totalTime, suppressEvents) { _wake(); if (!arguments.length) { return this._tTime; } let parent = this._dp; if (parent && parent.smoothChildTiming && this._ts) { _alignPlayhead(this, totalTime); !parent._dp || parent.parent || _postAddChecks(parent, this); // edge case: if this is a child of a timeline that already completed, for example, we must re-activate the parent. //in case any of the ancestor timelines had completed but should now be enabled, we should reset their totalTime() which will also ensure that they're lined up properly and enabled. Skip for animations that are on the root (wasteful). Example: a TimelineLite.exportRoot() is performed when there's a paused tween on the root, the export will not complete until that tween is unpaused, but imagine a child gets restarted later, after all [unpaused] tweens have completed. The start of that child would get pushed out, but one of the ancestors may have completed. while (parent && parent.parent) { if (parent.parent._time !== parent._start + (parent._ts >= 0 ? parent._tTime / parent._ts : (parent.totalDuration() - parent._tTime) / -parent._ts)) { parent.totalTime(parent._tTime, true); } parent = parent.parent; } if (!this.parent && this._dp.autoRemoveChildren && ((this._ts > 0 && totalTime < this._tDur) || (this._ts < 0 && totalTime > 0) || (!this._tDur && !totalTime) )) { //if the animation doesn't have a parent, put it back into its last parent (recorded as _dp for exactly cases like this). Limit to parents with autoRemoveChildren (like globalTimeline) so that if the user manually removes an animation from a timeline and then alters its playhead, it doesn't get added back in. _addToTimeline(this._dp, this, this._start - this._delay); } } if (this._tTime !== totalTime || (!this._dur && !suppressEvents) || (this._initted && Math.abs(this._zTime) === _tinyNum) || (!totalTime && !this._initted && (this.add || this._ptLookup))) { // check for _ptLookup on a Tween instance to ensure it has actually finished being instantiated, otherwise if this.reverse() gets called in the Animation constructor, it could trigger a render() here even though the _targets weren't populated, thus when _init() is called there won't be any PropTweens (it'll act like the tween is non-functional) this._ts || (this._pTime = totalTime); // otherwise, if an animation is paused, then the playhead is moved back to zero, then resumed, it'd revert back to the original time at the pause //if (!this._lock) { // avoid endless recursion (not sure we need this yet or if it's worth the performance hit) // this._lock = 1; _lazySafeRender(this, totalTime, suppressEvents); // this._lock = 0; //} } return this; } time(value, suppressEvents) { return arguments.length ? this.totalTime((Math.min(this.totalDuration(), value + _elapsedCycleDuration(this)) % (this._dur + this._rDelay)) || (value ? this._dur : 0), suppressEvents) : this._time; // note: if the modulus results in 0, the playhead could be exactly at the end or the beginning, and we always defer to the END with a non-zero value, otherwise if you set the time() to the very end (duration()), it would render at the START! } totalProgress(value, suppressEvents) { return arguments.length ? this.totalTime( this.totalDuration() * value, suppressEvents) : this.totalDuration() ? Math.min(1, this._tTime / this._tDur) : this.ratio; } progress(value, suppressEvents) { return arguments.length ? this.totalTime( this.duration() * (this._yoyo && !(this.iteration() & 1) ? 1 - value : value) + _elapsedCycleDuration(this), suppressEvents) : (this.duration() ? Math.min(1, this._time / this._dur) : this.ratio); } iteration(value, suppressEvents) { let cycleDuration = this.duration() + this._rDelay; return arguments.length ? this.totalTime(this._time + (value - 1) * cycleDuration, suppressEvents) : this._repeat ? _animationCycle(this._tTime, cycleDuration) + 1 : 1; } // potential future addition: // isPlayingBackwards() { // let animation = this, // orientation = 1; // 1 = forward, -1 = backward // while (animation) { // orientation *= animation.reversed() || (animation.repeat() && !(animation.iteration() & 1)) ? -1 : 1; // animation = animation.parent; // } // return orientation < 0; // } timeScale(value) { if (!arguments.length) { return this._rts === -_tinyNum ? 0 : this._rts; // recorded timeScale. Special case: if someone calls reverse() on an animation with timeScale of 0, we assign it -_tinyNum to remember it's reversed. } if (this._rts === value) { return this; } let tTime = this.parent && this._ts ? _parentToChildTotalTime(this.parent._time, this) : this._tTime; // make sure to do the parentToChildTotalTime() BEFORE setting the new _ts because the old one must be used in that calculation. // future addition? Up side: fast and minimal file size. Down side: only works on this animation; if a timeline is reversed, for example, its childrens' onReverse wouldn't get called. //(+value < 0 && this._rts >= 0) && _callback(this, "onReverse", true); // prioritize rendering where the parent's playhead lines up instead of this._tTime because there could be a tween that's animating another tween's timeScale in the same rendering loop (same parent), thus if the timeScale tween renders first, it would alter _start BEFORE _tTime was set on that tick (in the rendering loop), effectively freezing it until the timeScale tween finishes. this._rts = +value || 0; this._ts = (this._ps || value === -_tinyNum) ? 0 : this._rts; // _ts is the functional timeScale which would be 0 if the animation is paused. this.totalTime(_clamp(-Math.abs(this._delay), this._tDur, tTime), true); _setEnd(this); // if parent.smoothChildTiming was false, the end time didn't get updated in the _alignPlayhead() method, so do it here. return _recacheAncestors(this); } paused(value) { if (!arguments.length) { return this._ps; } if (this._ps !== value) { this._ps = value; if (value) { this._pTime = this._tTime || Math.max(-this._delay, this.rawTime()); // if the pause occurs during the delay phase, make sure that's factored in when resuming. this._ts = this._act = 0; // _ts is the functional timeScale, so a paused tween would effectively have a timeScale of 0. We record the "real" timeScale as _rts (recorded time scale) } else { _wake(); this._ts = this._rts; //only defer to _pTime (pauseTime) if tTime is zero. Remember, someone could pause() an animation, then scrub the playhead and resume(). If the parent doesn't have smoothChildTiming, we render at the rawTime() because the startTime won't get updated. this.totalTime(this.parent && !this.parent.smoothChildTiming ? this.rawTime() : this._tTime || this._pTime, (this.progress() === 1) && Math.abs(this._zTime) !== _tinyNum && (this._tTime -= _tinyNum)); // edge case: animation.progress(1).pause().play() wouldn't render again because the playhead is already at the end, but the call to totalTime() below will add it back to its parent...and not remove it again (since removing only happens upon rendering at a new time). Offsetting the _tTime slightly is done simply to cause the final render in totalTime() that'll pop it off its timeline (if autoRemoveChildren is true, of course). Check to make sure _zTime isn't -_tinyNum to avoid an edge case where the playhead is pushed to the end but INSIDE a tween/callback, the timeline itself is paused thus halting rendering and leaving a few unrendered. When resuming, it wouldn't render those otherwise. } } return this; } startTime(value) { if (arguments.length) { this._start = value; let parent = this.parent || this._dp; parent && (parent._sort || !this.parent) && _addToTimeline(parent, this, value - this._delay); return this; } return this._start; } endTime(includeRepeats) { return this._start + (_isNotFalse(includeRepeats) ? this.totalDuration() : this.duration()) / Math.abs(this._ts || 1); } rawTime(wrapRepeats) { let parent = this.parent || this._dp; // _dp = detached parent return !parent ? this._tTime : (wrapRepeats && (!this._ts || (this._repeat && this._time && this.totalProgress() < 1))) ? this._tTime % (this._dur + this._rDelay) : !this._ts ? this._tTime : _parentToChildTotalTime(parent.rawTime(wrapRepeats), this); } revert(config= _revertConfig) { let prevIsReverting = _reverting; _reverting = config; if (this._initted || this._startAt) { this.timeline && this.timeline.revert(config); this.totalTime(-0.01, config.suppressEvents); } this.data !== "nested" && config.kill !== false && this.kill(); _reverting = prevIsReverting; return this; } globalTime(rawTime) { let animation = this, time = arguments.length ? rawTime : animation.rawTime(); while (animation) { time = animation._start + time / (animation._ts || 1); animation = animation._dp; } return !this.parent && this._sat ? (this._sat.vars.immediateRender ? -Infinity : this._sat.globalTime(rawTime)) : time; // the _startAt tweens for .fromTo() and .from() that have immediateRender should always be FIRST in the timeline (important for context.revert()). "_sat" stands for _startAtTween, referring to the parent tween that created the _startAt. We must discern if that tween had immediateRender so that we can know whether or not to prioritize it in revert(). } repeat(value) { if (arguments.length) { this._repeat = value === Infinity ? -2 : value; return _onUpdateTotalDuration(this); } return this._repeat === -2 ? Infinity : this._repeat; } repeatDelay(value) { if (arguments.length) { let time = this._time; this._rDelay = value; _onUpdateTotalDuration(this); return time ? this.time(time) : this; } return this._rDelay; } yoyo(value) { if (arguments.length) { this._yoyo = value; return this; } return this._yoyo; } seek(position, suppressEvents) { return this.totalTime(_parsePosition(this, position), _isNotFalse(suppressEvents)); } restart(includeDelay, suppressEvents) { return this.play().totalTime(includeDelay ? -this._delay : 0, _isNotFalse(suppressEvents)); } play(from, suppressEvents) { from != null && this.seek(from, suppressEvents); return this.reversed(false).paused(false); } reverse(from, suppressEvents) { from != null && this.seek(from || this.totalDuration(), suppressEvents); return this.reversed(true).paused(false); } pause(atTime, suppressEvents) { atTime != null && this.seek(atTime, suppressEvents); return this.paused(true); } resume() { return this.paused(false); } reversed(value) { if (arguments.length) { !!value !== this.reversed() && this.timeScale(-this._rts || (value ? -_tinyNum : 0)); // in case timeScale is zero, reversing would have no effect so we use _tinyNum. return this; } return this._rts < 0; } invalidate() { this._initted = this._act = 0; this._zTime = -_tinyNum; return this; } isActive() { let parent = this.parent || this._dp, start = this._start, rawTime; return !!(!parent || (this._ts && this._initted && parent.isActive() && (rawTime = parent.rawTime(true)) >= start && rawTime < this.endTime(true) - _tinyNum)); } eventCallback(type, callback, params) { let vars = this.vars; if (arguments.length > 1) { if (!callback) { delete vars[type]; } else { vars[type] = callback; params && (vars[type + "Params"] = params); type === "onUpdate" && (this._onUpdate = callback); } return this; } return vars[type]; } then(onFulfilled) { let self = this; return new Promise(resolve => { let f = _isFunction(onFulfilled) ? onFulfilled : _passThrough, _resolve = () => { let _then = self.then; self.then = null; // temporarily null the then() method to avoid an infinite loop (see https://github.com/greensock/GSAP/issues/322) _isFunction(f) && (f = f(self)) && (f.then || f === self) && (self.then = _then); resolve(f); self.then = _then; }; if (self._initted && (self.totalProgress() === 1 && self._ts >= 0) || (!self._tTime && self._ts < 0)) { _resolve(); } else { self._prom = _resolve; } }); } kill() { _interrupt(this); } } _setDefaults(Animation.prototype, {_time:0, _start:0, _end:0, _tTime:0, _tDur:0, _dirty:0, _repeat:0, _yoyo:false, parent:null, _initted:false, _rDelay:0, _ts:1, _dp:0, ratio:0, _zTime:-_tinyNum, _prom:0, _ps:false, _rts:1}); /* * ------------------------------------------------- * TIMELINE * ------------------------------------------------- */ export class Timeline extends Animation { constructor(vars = {}, position) { super(vars); this.labels = {}; this.smoothChildTiming = !!vars.smoothChildTiming; this.autoRemoveChildren = !!vars.autoRemoveChildren; this._sort = _isNotFalse(vars.sortChildren); _globalTimeline && _addToTimeline(vars.parent || _globalTimeline, this, position); vars.reversed && this.reverse(); vars.paused && this.paused(true); vars.scrollTrigger && _scrollTrigger(this, vars.scrollTrigger); } to(targets, vars, position) { _createTweenType(0, arguments, this); return this; } from(targets, vars, position) { _createTweenType(1, arguments, this); return this; } fromTo(targets, fromVars, toVars, position) { _createTweenType(2, arguments, this); return this; } set(targets, vars, position) { vars.duration = 0; vars.parent = this; _inheritDefaults(vars).repeatDelay || (vars.repeat = 0); vars.immediateRender = !!vars.immediateRender; new Tween(targets, vars, _parsePosition(this, position), 1); return this; } call(callback, params, position) { return _addToTimeline(this, Tween.delayedCall(0, callback, params), position); } //ONLY for backward compatibility! Maybe delete? staggerTo(targets, duration, vars, stagger, position, onCompleteAll, onCompleteAllParams) { vars.duration = duration; vars.stagger = vars.stagger || stagger; vars.onComplete = onCompleteAll; vars.onCompleteParams = onCompleteAllParams; vars.parent = this; new Tween(targets, vars, _parsePosition(this, position)); return this; } staggerFrom(targets, duration, vars, stagger, position, onCompleteAll, onCompleteAllParams) { vars.runBackwards = 1; _inheritDefaults(vars).immediateRender = _isNotFalse(vars.immediateRender); return this.staggerTo(targets, duration, vars, stagger, position, onCompleteAll, onCompleteAllParams); } staggerFromTo(targets, duration, fromVars, toVars, stagger, position, onCompleteAll, onCompleteAllParams) { toVars.startAt = fromVars; _inheritDefaults(toVars).immediateRender = _isNotFalse(toVars.immediateRender); return this.staggerTo(targets, duration, toVars, stagger, position, onCompleteAll, onCompleteAllParams); } render(totalTime, suppressEvents, force) { let prevTime = this._time, tDur = this._dirty ? this.totalDuration() : this._tDur, dur = this._dur, tTime = totalTime <= 0 ? 0 : _roundPrecise(totalTime), // if a paused timeline is resumed (or its _start is updated for another reason...which rounds it), that could result in the playhead shifting a **tiny** amount and a zero-duration child at that spot may get rendered at a different ratio, like its totalTime in render() may be 1e-17 instead of 0, for example. crossingStart = (this._zTime < 0) !== (totalTime < 0) && (this._initted || !dur), time, child, next, iteration, cycleDuration, prevPaused, pauseTween, timeScale, prevStart, prevIteration, yoyo, isYoyo; this !== _globalTimeline && tTime > tDur && totalTime >= 0 && (tTime = tDur); if (tTime !== this._tTime || force || crossingStart) { if (prevTime !== this._time && dur) { //if totalDuration() finds a child with a negative startTime and smoothChildTiming is true, things get shifted around internally so we need to adjust the time accordingly. For example, if a tween starts at -30 we must shift EVERYTHING forward 30 seconds and move this timeline's startTime backward by 30 seconds so that things align with the playhead (no jump). tTime += this._time - prevTime; totalTime += this._time - prevTime; } time = tTime; prevStart = this._start; timeScale = this._ts; prevPaused = !timeScale; if (crossingStart) { dur || (prevTime = this._zTime); //when the playhead arrives at EXACTLY time 0 (right on top) of a zero-duration timeline, we need to discern if events are suppressed so that when the playhead moves again (next time), it'll trigger the callback. If events are NOT suppressed, obviously the callback would be triggered in this render. Basically, the callback should fire either when the playhead ARRIVES or LEAVES this exact spot, not both. Imagine doing a timeline.seek(0) and there's a callback that sits at 0. Since events are suppressed on that seek() by default, nothing will fire, but when the playhead moves off of that position, the callback should fire. This behavior is what people intuitively expect. (totalTime || !suppressEvents) && (this._zTime = totalTime); } if (this._repeat) { //adjust the time for repeats and yoyos yoyo = this._yoyo; cycleDuration = dur + this._rDelay; if (this._repeat < -1 && totalTime < 0) { return this.totalTime(cycleDuration * 100 + totalTime, suppressEvents, force); } time = _roundPrecise(tTime % cycleDuration); //round to avoid floating point errors. (4 % 0.8 should be 0 but some browsers report it as 0.79999999!) if (tTime === tDur) { // the tDur === tTime is for edge cases where there's a lengthy decimal on the duration and it may reach the very end but the time is rendered as not-quite-there (remember, tDur is rounded to 4 decimals whereas dur isn't) iteration = this._repeat; time = dur; } else { iteration = ~~(tTime / cycleDuration); if (iteration && iteration === tTime / cycleDuration) { time = dur; iteration--; } time > dur && (time = dur); } prevIteration = _animationCycle(this._tTime, cycleDuration); !prevTime && this._tTime && prevIteration !== iteration && this._tTime - prevIteration * cycleDuration - this._dur <= 0 && (prevIteration = iteration); // edge case - if someone does addPause() at the very beginning of a repeating timeline, that pause is technically at the same spot as the end which causes this._time to get set to 0 when the totalTime would normally place the playhead at the end. See https://greensock.com/forums/topic/23823-closing-nav-animation-not-working-on-ie-and-iphone-6-maybe-other-older-browser/?tab=comments#comment-113005 also, this._tTime - prevIteration * cycleDuration - this._dur <= 0 just checks to make sure it wasn't previously in the "repeatDelay" portion if (yoyo && (iteration & 1)) { time = dur - time; isYoyo = 1; } /* make sure children at the end/beginning of the timeline are rendered properly. If, for example, a 3-second long timeline rendered at 2.9 seconds previously, and now renders at 3.2 seconds (which would get translated to 2.8 seconds if the timeline yoyos or 0.2 seconds if it just repeats), there could be a callback or a short tween that's at 2.95 or 3 seconds in which wouldn't render. So we need to push the timeline to the end (and/or beginning depending on its yoyo value). Also we must ensure that zero-duration tweens at the very beginning or end of the Timeline work. */ if (iteration !== prevIteration && !this._lock) { let rewinding = (yoyo && (prevIteration & 1)), doesWrap = (rewinding === (yoyo && (iteration & 1))); iteration < prevIteration && (rewinding = !rewinding); prevTime = rewinding ? 0 : tTime % dur ? dur : tTime; // if the playhead is landing exactly at the end of an iteration, use that totalTime rather than only the duration, otherwise it'll skip the 2nd render since it's effectively at the same time. this._lock = 1; this.render(prevTime || (isYoyo ? 0 : _roundPrecise(iteration * cycleDuration)), suppressEvents, !dur)._lock = 0; this._tTime = tTime; // if a user gets the iteration() inside the onRepeat, for example, it should be accurate. !suppressEvents && this.parent && _callback(this, "onRepeat"); this.vars.repeatRefresh && !isYoyo && (this.invalidate()._lock = 1); if ((prevTime && prevTime !== this._time) || prevPaused !== !this._ts || (this.vars.onRepeat && !this.parent && !this._act)) { // if prevTime is 0 and we render at the very end, _time will be the end, thus won't match. So in this edge case, prevTime won't match _time but that's okay. If it gets killed in the onRepeat, eject as well. return this; } dur = this._dur; // in case the duration changed in the onRepeat tDur = this._tDur; if (doesWrap) { this._lock = 2; prevTime = rewinding ? dur : -0.0001; this.render(prevTime, true); this.vars.repeatRefresh && !isYoyo && this.invalidate(); } this._lock = 0; if (!this._ts && !prevPaused) { return this; } //in order for yoyoEase to work properly when there's a stagger, we must swap out the ease in each sub-tween. _propagateYoyoEase(this, isYoyo); } } if (this._hasPause && !this._forcing && this._lock < 2) { pauseTween = _findNextPauseTween(this, _roundPrecise(prevTime), _roundPrecise(time)); if (pauseTween) { tTime -= time - (time = pauseTween._start); } } this._tTime = tTime; this._time = time; this._act = !timeScale; //as long as it's not paused, force it to be active so that if the user renders independent of the parent timeline, it'll be forced to re-render on the next tick. if (!this._initted) { this._onUpdate = this.vars.onUpdate; this._initted = 1; this._zTime = totalTime; prevTime = 0; // upon init, the playhead should always go forward; someone could invalidate() a completed timeline and then if they restart(), that would make child tweens render in reverse order which could lock in the wrong starting values if they build on each other, like tl.to(obj, {x: 100}).to(obj, {x: 0}). } if (!prevTime && time && !suppressEvents && !iteration) { _callback(this, "onStart"); if (this._tTime !== tTime) { // in case the onStart triggered a render at a different spot, eject. Like if someone did animation.pause(0.5) or something inside the onStart. return this; } } if (time >= prevTime && totalTime >= 0) { child = this._first; while (child) { next = child._next; if ((child._act || time >= child._start) && child._ts && pauseTween !== child) { if (child.parent !== this) { // an extreme edge case - the child's render could do something like kill() the "next" one in the linked list, or reparent it. In that case we must re-initiate the whole render to be safe. return this.render(totalTime, suppressEvents, force); } child.render(child._ts > 0 ? (time - child._start) * child._ts : (child._dirty ? child.totalDuration() : child._tDur) + (time - child._start) * child._ts, suppressEvents, force); if (time !== this._time || (!this._ts && !prevPaused)) { //in case a tween pauses or seeks the timeline when rendering, like inside of an onUpdate/onComplete pauseTween = 0; next && (tTime += (this._zTime = -_tinyNum)); // it didn't finish rendering, so flag zTime as negative so that so that the next time render() is called it'll be forced (to render any remaining children) break; } } child = next; } } else { child = this._last; let adjustedTime = totalTime < 0 ? totalTime : time; //when the playhead goes backward beyond the start of this timeline, we must pass that information down to the child animations so that zero-duration tweens know whether to render their starting or ending values. while (child) { next = child._prev; if ((child._act || adjustedTime <= child._end) && child._ts && pauseTween !== child) { if (child.parent !== this) { // an extreme edge case - the child's render could do something like kill() the "next" one in the linked list, or reparent it. In that case we must re-initiate the whole render to be safe. return this.render(totalTime, suppressEvents, force); } child.render(child._ts > 0 ? (adjustedTime - child._start) * child._ts : (child._dirty ? child.totalDuration() : child._tDur) + (adjustedTime - child._start) * child._ts, suppressEvents, force || (_reverting && (child._initted || child._startAt))); // if reverting, we should always force renders of initted tweens (but remember that .fromTo() or .from() may have a _startAt but not _initted yet). If, for example, a .fromTo() tween with a stagger (which creates an internal timeline) gets reverted BEFORE some of its child tweens render for the first time, it may not properly trigger them to revert. if (time !== this._time || (!this._ts && !prevPaused)) { //in case a tween pauses or seeks the timeline when rendering, like inside of an onUpdate/onComplete pauseTween = 0; next && (tTime += (this._zTime = adjustedTime ? -_tinyNum : _tinyNum)); // it didn't finish rendering, so adjust zTime so that so that the next time render() is called it'll be forced (to render any remaining children) break; } } child = next; } } if (pauseTween && !suppressEvents) { this.pause(); pauseTween.render(time >= prevTime ? 0 : -_tinyNum)._zTime = time >= prevTime ? 1 : -1; if (this._ts) { //the callback resumed playback! So since we may have held back the playhead due to where the pause is positioned, go ahead and jump to where it's SUPPOSED to be (if no pause happened). this._start = prevStart; //if the pause was at an earlier time and the user resumed in the callback, it could reposition the timeline (changing its startTime), throwing things off slightly, so we make sure the _start doesn't shift. _setEnd(this); return this.render(totalTime, suppressEvents, force); } } this._onUpdate && !suppressEvents && _callback(this, "onUpdate", true); if ((tTime === tDur && this._tTime >= this.totalDuration()) || (!tTime && prevTime)) if (prevStart === this._start || Math.abs(timeScale) !== Math.abs(this._ts)) if (!this._lock) { // remember, a child's callback may alter this timeline's playhead or timeScale which is why we need to add some of these checks. (totalTime || !dur) && ((tTime === tDur && this._ts > 0) || (!tTime && this._ts < 0)) && _removeFromParent(this, 1); // don't remove if the timeline is reversed and the playhead isn't at 0, otherwise tl.progress(1).reverse() won't work. Only remove if the playhead is at the end and timeScale is positive, or if the playhead is at 0 and the timeScale is negative. if (!suppressEvents && !(totalTime < 0 && !prevTime) && (tTime || prevTime || !tDur)) { _callback(this, (tTime === tDur && totalTime >= 0 ? "onComplete" : "onReverseComplete"), true); this._prom && !(tTime < tDur && this.timeScale() > 0) && this._prom(); } } } return this; } add(child, position) { _isNumber(position) || (position = _parsePosition(this, position, child)); if (!(child instanceof Animation)) { if (_isArray(child)) { child.forEach(obj => this.add(obj, position)); return this; } if (_isString(child)) { return this.addLabel(child, position); } if (_isFunction(child)) { child = Tween.delayedCall(0, child); } else { return this; } } return this !== child ? _addToTimeline(this, child, position) : this; //don't allow a timeline to be added to itself as a child! } getChildren(nested = true, tweens = true, timelines = true, ignoreBeforeTime = -_bigNum) { let a = [], child = this._first; while (child) { if (child._start >= ignoreBeforeTime) { if (child instanceof Tween) { tweens && a.push(child); } else { timelines && a.push(child); nested && a.push(...child.getChildren(true, tweens, timelines)); } } child = child._next; } return a; } getById(id) { let animations = this.getChildren(1, 1, 1), i = animations.length; while(i--) { if (animations[i].vars.id === id) { return animations[i]; } } } remove(child) { if (_isString(child)) { return this.removeLabel(child); } if (_isFunction(child)) { return this.killTweensOf(child); } _removeLinkedListItem(this, child); if (child === this._recent) { this._recent = this._last; } return _uncache(this); } totalTime(totalTime, suppressEvents) { if (!arguments.length) { return this._tTime; } this._forcing = 1; if (!this._dp && this._ts) { //special case for the global timeline (or any other that has no parent or detached parent). this._start = _roundPrecise(_ticker.time - (this._ts > 0 ? totalTime / this._ts : (this.totalDuration() - totalTime) / -this._ts)); } super.totalTime(totalTime, suppressEvents); this._forcing = 0; return this; } addLabel(label, position) { this.labels[label] = _parsePosition(this, position); return this; } removeLabel(label) { delete this.labels[label]; return this; } addPause(position, callback, params) { let t = Tween.delayedCall(0, callback || _emptyFunc, params); t.data = "isPause"; this._hasPause = 1; return _addToTimeline(this, t, _parsePosition(this, position)); } removePause(position) { let child = this._first; position = _parsePosition(this, position); while (child) { if (child._start === position && child.data === "isPause") { _removeFromParent(child); } child = child._next; } } killTweensOf(targets, props, onlyActive) { let tweens = this.getTweensOf(targets, onlyActive), i = tweens.length; while (i--) { (_overwritingTween !== tweens[i]) && tweens[i].kill(targets, props); } return this; } getTweensOf(targets, onlyActive) { let a = [], parsedTargets = toArray(targets), child = this._first, isGlobalTime = _isNumber(onlyActive), // a number is interpreted as a global time. If the animation spans children; while (child) { if (child instanceof Tween) { if (_arrayContainsAny(child._targets, parsedTargets) && (isGlobalTime ? (!_overwritingTween || (child._initted && child._ts)) && child.globalTime(0) <= onlyActive && child.globalTime(child.totalDuration()) > onlyActive : !onlyActive || child.isActive())) { // note: if this is for overwriting, it should only be for tweens that aren't paused and are initted. a.push(child); } } else if ((children = child.getTweensOf(parsedTargets, onlyActive)).length) { a.push(...children); } child = child._next; } return a; } // potential future feature - targets() on timelines // targets() { // let result = []; // this.getChildren(true, true, false).forEach(t => result.push(...t.targets())); // return result.filter((v, i) => result.indexOf(v) === i); // } tweenTo(position, vars) { vars = vars || {}; let tl = this, endTime = _parsePosition(tl, position), { startAt, onStart, onStartParams, immediateRender } = vars, initted, tween = Tween.to(tl, _setDefaults({ ease: vars.ease || "none", lazy: false, immediateRender: false, time: endTime, overwrite: "auto", duration: vars.duration || (Math.abs((endTime - ((startAt && "time" in startAt) ? startAt.time : tl._time)) / tl.timeScale())) || _tinyNum, onStart: () => { tl.pause(); if (!initted) { let duration = vars.duration || Math.abs((endTime - ((startAt && "time" in startAt) ? startAt.time : tl._time)) / tl.timeScale()); (tween._dur !== duration) && _setDuration(tween, duration, 0, 1).render(tween._time, true, true); initted = 1; } onStart && onStart.apply(tween, onStartParams || []); //in case the user had an onStart in the vars - we don't want to overwrite it. } }, vars)); return immediateRender ? tween.render(0) : tween; } tweenFromTo(fromPosition, toPosition, vars) { return this.tweenTo(toPosition, _setDefaults({startAt:{time:_parsePosition(this, fromPosition)}}, vars)); } recent() { return this._recent; } nextLabel(afterTime = this._time) { return _getLabelInDirection(this, _parsePosition(this, afterTime)); } previousLabel(beforeTime = this._time) { return _getLabelInDirection(this, _parsePosition(this, beforeTime), 1); } currentLabel(value) { return arguments.length ? this.seek(value, true) : this.previousLabel(this._time + _tinyNum); } shiftChildren(amount, adjustLabels, ignoreBeforeTime = 0) { let child = this._first, labels = this.labels, p; while (child) { if (child._start >= ignoreBeforeTime) { child._start += amount; child._end += amount; } child = child._next; } if (adjustLabels) { for (p in labels) { if (labels[p] >= ignoreBeforeTime) { labels[p] += amount; } } } return _uncache(this); } invalidate(soft) { let child = this._first; this._lock = 0; while (child) { child.invalidate(soft); child = child._next; } return super.invalidate(soft); } clear(includeLabels = true) { let child = this._first, next; while (child) { next = child._next; this.remove(child); child = next; } this._dp && (this._time = this._tTime = this._pTime = 0); includeLabels && (this.labels = {}); return _uncache(this); } totalDuration(value) { let max = 0, self = this, child = self._last, prevStart = _bigNum, prev, start, parent; if (arguments.length) { return self.timeScale((self._repeat < 0 ? self.duration() : self.totalDuration()) / (self.reversed() ? -value : value)); } if (self._dirty) { parent = self.parent; while (child) { prev = child._prev; //record it here in case the tween changes position in the sequence... child._dirty && child.totalDuration(); //could change the tween._startTime, so make sure the animation's cache is clean before analyzing it. start = child._start; if (start > prevStart && self._sort && child._ts && !self._lock) { //in case one of the tweens shifted out of order, it needs to be re-inserted into the correct position in the sequence self._lock = 1; //prevent endless recursive calls - there are methods that get triggered that check duration/totalDuration when we add(). _addToTimeline(self, child, start - child._delay, 1)._lock = 0; } else { prevStart = start; } if (start < 0 && child._ts) { //children aren't allowed to have negative startTimes unless smoothChildTiming is true, so adjust here if one is found. max -= start; if ((!parent && !self._dp) || (parent && parent.smoothChildTiming)) { self._start += start / self._ts; self._time -= start; self._tTime -= start; } self.shiftChildren(-start, false, -1e999); prevStart = 0; } child._end > max && child._ts && (max = child._end); child = prev; } _setDuration(self, (self === _globalTimeline && self._time > max) ? self._time : max, 1, 1); self._dirty = 0; } return self._tDur; } static updateRoot(time) { if (_globalTimeline._ts) { _lazySafeRender(_globalTimeline, _parentToChildTotalTime(time, _globalTimeline)); _lastRenderedFrame = _ticker.frame; } if (_ticker.frame >= _nextGCFrame) { _nextGCFrame += _config.autoSleep || 120; let child = _globalTimeline._first; if (!child || !child._ts) if (_config.autoSleep && _ticker._listeners.length < 2) { while (child && !child._ts) { child = child._next; } child || _ticker.sleep(); } } } } _setDefaults(Timeline.prototype, {_lock:0, _hasPause:0, _forcing:0}); let _addComplexStringPropTween = function(target, prop, start, end, setter, stringFilter, funcParam) { //note: we call _addComplexStringPropTween.call(tweenInstance...) to ensure that it's scoped properly. We may call it from within a plugin too, thus "this" would refer to the plugin. let pt = new PropTween(this._pt, target, prop, 0, 1, _renderComplexString, null, setter), index = 0, matchIndex = 0, result, startNums, color, endNum, chunk, startNum, hasRandom, a; pt.b = start; pt.e = end; start += ""; //ensure values are strings end += ""; if ((hasRandom = ~end.indexOf("random("))) { end = _replaceRandom(end); } if (stringFilter) { a = [start, end]; stringFilter(a, target, prop); //pass an array with the starting and ending values and let the filter do whatever it needs to the values. start = a[0]; end = a[1]; } startNums = start.match(_complexStringNumExp) || []; while ((result = _complexStringNumExp.exec(end))) { endNum = result[0]; chunk = end.substring(index, result.index); if (color) { color = (color + 1) % 5; } else if (chunk.substr(-5) === "rgba(") { color = 1; } if (endNum !== startNums[matchIndex++]) { startNum = parseFloat(startNums[matchIndex-1]) || 0; //these nested PropTweens are handled in a special way - we'll never actually call a render or setter method on them. We'll just loop through them in the parent complex string PropTween's render method. pt._pt = { _next: pt._pt, p: (chunk || matchIndex === 1) ? chunk : ",", //note: SVG spec allows omission of comma/space when a negative sign is wedged between two numbers, like 2.5-5.3 instead of 2.5,-5.3 but when tweening, the negative value may switch to positive, so we insert the comma just in case. s: startNum, c: endNum.charAt(1) === "=" ? _parseRelative(startNum, endNum) - startNum : parseFloat(endNum) - startNum, m: (color && color < 4) ? Math.round : 0 }; index = _complexStringNumExp.lastIndex; } } pt.c = (index < end.length) ? end.substring(index, end.length) : ""; //we use the "c" of the PropTween to store the final part of the string (after the last number) pt.fp = funcParam; if (_relExp.test(end) || hasRandom) { pt.e = 0; //if the end string contains relative values or dynamic random(...) values, delete the end it so that on the final render we don't actually set it to the string with += or -= characters (forces it to use the calculated value). } this._pt = pt; //start the linked list with this new PropTween. Remember, we call _addComplexStringPropTween.call(tweenInstance...) to ensure that it's scoped properly. We may call it from within a plugin too, thus "this" would refer to the plugin. return pt; }, _addPropTween = function(target, prop, start, end, index, targets, modifier, stringFilter, funcParam, optional) { _isFunction(end) && (end = end(index || 0, target, targets)); let currentValue = target[prop], parsedStart = (start !== "get") ? start : !_isFunction(currentValue) ? currentValue : (funcParam ? target[(prop.indexOf("set") || !_isFunction(target["get" + prop.substr(3)])) ? prop : "get" + prop.substr(3)](funcParam) : target[prop]()), setter = !_isFunction(currentValue) ? _setterPlain : funcParam ? _setterFuncWithParam : _setterFunc, pt; if (_isString(end)) { if (~end.indexOf("random(")) { end = _replaceRandom(end); } if (end.charAt(1) === "=") { pt = _parseRelative(parsedStart, end) + (getUnit(parsedStart) || 0); if (pt || pt === 0) { // to avoid isNaN, like if someone passes in a value like "!= whatever" end = pt; } } } if (!optional || parsedStart !== end || _forceAllPropTweens) { if (!isNaN(parsedStart * end) && end !== "") { // fun fact: any number multiplied by "" is evaluated as the number 0! pt = new PropTween(this._pt, target, prop, +parsedStart || 0, end - (parsedStart || 0), typeof(currentValue) === "boolean" ? _renderBoolean : _renderPlain, 0, setter); funcParam && (pt.fp = funcParam); modifier && pt.modifier(modifier, this, target); return (this._pt = pt); } !currentValue && !(prop in target) && _missingPlugin(prop, end); return _addComplexStringPropTween.call(this, target, prop, parsedStart, end, setter, stringFilter || _config.stringFilter, funcParam); } }, //creates a copy of the vars object and processes any function-based values (putting the resulting values directly into the copy) as well as strings with "random()" in them. It does NOT process relative values. _processVars = (vars, index, target, targets, tween) => { _isFunction(vars) && (vars = _parseFuncOrString(vars, tween, index, target, targets)); if (!_isObject(vars) || (vars.style && vars.nodeType) || _isArray(vars) || _isTypedArray(vars)) { return _isString(vars) ? _parseFuncOrString(vars, tween, index, target, targets) : vars; } let copy = {}, p; for (p in vars) { copy[p] = _parseFuncOrString(vars[p], tween, index, target, targets); } return copy; }, _checkPlugin = (property, vars, tween, index, target, targets) => { let plugin, pt, ptLookup, i; if (_plugins[property] && (plugin = new _plugins[property]()).init(target, plugin.rawVars ? vars[property] : _processVars(vars[property], index, target, targets, tween), tween, index, targets) !== false) { tween._pt = pt = new PropTween(tween._pt, target, property, 0, 1, plugin.render, plugin, 0, plugin.priority); if (tween !== _quickTween) { ptLookup = tween._ptLookup[tween._targets.indexOf(target)]; //note: we can't use tween._ptLookup[index] because for staggered tweens, the index from the fullTargets array won't match what it is in each individual tween that spawns from the stagger. i = plugin._props.length; while (i--) { ptLookup[plugin._props[i]] = pt; } } } return plugin; }, _overwritingTween, //store a reference temporarily so we can avoid overwriting itself. _forceAllPropTweens, _initTween = (tween, time, tTime) => { let vars = tween.vars, { ease, startAt, immediateRender, lazy, onUpdate, onUpdateParams, callbackScope, runBackwards, yoyoEase, keyframes, autoRevert } = vars, dur = tween._dur, prevStartAt = tween._startAt, targets = tween._targets, parent = tween.parent, //when a stagger (or function-based duration/delay) is on a Tween instance, we create a nested timeline which means that the "targets" of that tween don't reflect the parent. This function allows us to discern when it's a nested tween and in that case, return the full targets array so that function-based values get calculated properly. Also remember that if the tween has a stagger AND keyframes, it could be multiple levels deep which is why we store the targets Array in the vars of the timeline. fullTargets = (parent && parent.data === "nested") ? parent.vars.targets : targets, autoOverwrite = (tween._overwrite === "auto") && !_suppressOverwrites, tl = tween.timeline, cleanVars, i, p, pt, target, hasPriority, gsData, harness, plugin, ptLookup, index, harnessVars, overwritten; tl && (!keyframes || !ease) && (ease = "none"); tween._ease = _parseEase(ease, _defaults.ease); tween._yEase = yoyoEase ? _invertEase(_parseEase(yoyoEase === true ? ease : yoyoEase, _defaults.ease)) : 0; if (yoyoEase && tween._yoyo && !tween._repeat) { //there must have been a parent timeline with yoyo:true that is currently in its yoyo phase, so flip the eases. yoyoEase = tween._yEase; tween._yEase = tween._ease; tween._ease = yoyoEase; } tween._from = !tl && !!vars.runBackwards; //nested timelines should never run backwards - the backwards-ness is in the child tweens. if (!tl || (keyframes && !vars.stagger)) { //if there's an internal timeline, skip all the parsing because we passed that task down the chain. harness = targets[0] ? _getCache(targets[0]).harness : 0; harnessVars = harness && vars[harness.prop]; //someone may need to specify CSS-specific values AND non-CSS values, like if the element has an "x" property plus it's a standard DOM element. We allow people to distinguish by wrapping plugin-specific stuff in a css:{} object for example. cleanVars = _copyExcluding(vars, _reservedProps); if (prevStartAt) { prevStartAt._zTime < 0 && prevStartAt.progress(1); // in case it's a lazy startAt that hasn't rendered yet. (time < 0 && runBackwards && immediateRender && !autoRevert) ? prevStartAt.render(-1, true) : prevStartAt.revert(runBackwards && dur ? _revertConfigNoKill : _startAtRevertConfig); // if it's a "startAt" (not "from()" or runBackwards: true), we only need to do a shallow revert (keep transforms cached in CSSPlugin) // don't just _removeFromParent(prevStartAt.render(-1, true)) because that'll leave inline styles. We're creating a new _startAt for "startAt" tweens that re-capture things to ensure that if the pre-tween values changed since the tween was created, they're recorded. prevStartAt._lazy = 0; } if (startAt) { _removeFromParent(tween._startAt = Tween.set(targets, _setDefaults({data: "isStart", overwrite: false, parent: parent, immediateRender: true, lazy: !prevStartAt && _isNotFalse(lazy), startAt: null, delay: 0, onUpdate: onUpdate, onUpdateParams: onUpdateParams, callbackScope: callbackScope, stagger: 0}, startAt))); //copy the properties/values into a new object to avoid collisions, like var to = {x:0}, from = {x:500}; timeline.fromTo(e, from, to).fromTo(e, to, from); tween._startAt._dp = 0; // don't allow it to get put back into root timeline! Like when revert() is called and totalTime() gets set. tween._startAt._sat = tween; // used in globalTime(). _sat stands for _startAtTween (time < 0 && (_reverting || (!immediateRender && !autoRevert))) && tween._startAt.revert(_revertConfigNoKill); // rare edge case, like if a render is forced in the negative direction of a non-initted tween. if (immediateRender) { if (dur && time <= 0 && tTime <= 0) { // check tTime here because in the case of a yoyo tween whose playhead gets pushed to the end like tween.progress(1), we should allow it through so that the onComplete gets fired properly. time && (tween._zTime = time); return; //we skip initialization here so that overwriting doesn't occur until the tween actually begins. Otherwise, if you create several immediateRender:true tweens of the same target/properties to drop into a Timeline, the last one created would overwrite the first ones because they didn't get placed into the timeline yet before the first render occurs and kicks in overwriting. } } } else if (runBackwards && dur) { //from() tweens must be handled uniquely: their beginning values must be rendered but we don't want overwriting to occur yet (when time is still 0). Wait until the tween actually begins before doing all the routines like overwriting. At that time, we should render at the END of the tween to ensure that things initialize correctly (remember, from() tweens go backwards) if (!prevStartAt) { time && (immediateRender = false); //in rare cases (like if a from() tween runs and then is invalidate()-ed), immediateRender could be true but the initial forced-render gets skipped, so there's no need to force the render in this context when the _time is greater than 0 p = _setDefaults({ overwrite: false, data: "isFromStart", //we tag the tween with as "isFromStart" so that if [inside a plugin] we need to only do something at the very END of a tween, we have a way of identifying this tween as merely the one that's setting the beginning values for a "from()" tween. For example, clearProps in CSSPlugin should only get applied at the very END of a tween and without this tag, from(...{height:100, clearProps:"height", delay:1}) would wipe the height at the beginning of the tween and after 1 second, it'd kick back in. lazy: immediateRender && !prevStartAt && _isNotFalse(lazy), immediateRender: immediateRender, //zero-duration tweens render immediately by default, but if we're not specifically instructed to render this tween immediately, we should skip this and merely _init() to record the starting values (rendering them immediately would push them to completion which is wasteful in that case - we'd have to render(-1) immediately after) stagger: 0, parent: parent //ensures that nested tweens that had a stagger are handled properly, like gsap.from(".class", {y: gsap.utils.wrap([-100,100]), stagger: 0.5}) }, cleanVars); harnessVars && (p[harness.prop] = harnessVars); // in case someone does something like .from(..., {css:{}}) _removeFromParent(tween._startAt = Tween.set(targets, p)); tween._startAt._dp = 0; // don't allow it to get put back into root timeline! tween._startAt._sat = tween; // used in globalTime() (time < 0) && (_reverting ? tween._startAt.revert(_revertConfigNoKill) : tween._startAt.render(-1, true)); tween._zTime = time; if (!immediateRender) { _initTween(tween._startAt, _tinyNum, _tinyNum); //ensures that the initial values are recorded } else if (!time) { return; } } } tween._pt = tween._ptCache = 0; lazy = (dur && _isNotFalse(lazy)) || (lazy && !dur); for (i = 0; i < targets.length; i++) { target = targets[i]; gsData = target._gsap || _harness(targets)[i]._gsap; tween._ptLookup[i] = ptLookup = {}; _lazyLookup[gsData.id] && _lazyTweens.length && _lazyRender(); //if other tweens of the same target have recently initted but haven't rendered yet, we've got to force the render so that the starting values are correct (imagine populating a timeline with a bunch of sequential tweens and then jumping to the end) index = fullTargets === targets ? i : fullTargets.indexOf(target); if (harness && (plugin = new harness()).init(target, harnessVars || cleanVars, tween, index, fullTargets) !== false) { tween._pt = pt = new PropTween(tween._pt, target, plugin.name, 0, 1, plugin.render, plugin, 0, plugin.priority); plugin._props.forEach(name => {ptLookup[name] = pt;}); plugin.priority && (hasPriority = 1); } if (!harness || harnessVars) { for (p in cleanVars) { if (_plugins[p] && (plugin = _checkPlugin(p, cleanVars, tween, index, target, fullTargets))) { plugin.priority && (hasPriority = 1); } else { ptLookup[p] = pt = _addPropTween.call(tween, target, p, "get", cleanVars[p], index, fullTargets, 0, vars.stringFilter); } } } tween._op && tween._op[i] && tween.kill(target, tween._op[i]); if (autoOverwrite && tween._pt) { _overwritingTween = tween; _globalTimeline.killTweensOf(target, ptLookup, tween.globalTime(time)); // make sure the overwriting doesn't overwrite THIS tween!!! overwritten = !tween.parent; _overwritingTween = 0; } tween._pt && lazy && (_lazyLookup[gsData.id] = 1); } hasPriority && _sortPropTweensByPriority(tween); tween._onInit && tween._onInit(tween); //plugins like RoundProps must wait until ALL of the PropTweens are instantiated. In the plugin's init() function, it sets the _onInit on the tween instance. May not be pretty/intuitive, but it's fast and keeps file size down. } tween._onUpdate = onUpdate; tween._initted = (!tween._op || tween._pt) && !overwritten; // if overwrittenProps resulted in the entire tween being killed, do NOT flag it as initted or else it may render for one tick. (keyframes && time <= 0) && tl.render(_bigNum, true, true); // if there's a 0% keyframe, it'll render in the "before" state for any staggered/delayed animations thus when the following tween initializes, it'll use the "before" state instead of the "after" state as the initial values. }, _updatePropTweens = (tween, property, value, start, startIsRelative, ratio, time) => { let ptCache = ((tween._pt && tween._ptCache) || (tween._ptCache = {}))[property], pt, rootPT, lookup, i; if (!ptCache) { ptCache = tween._ptCache[property] = []; lookup = tween._ptLookup; i = tween._targets.length; while (i--) { pt = lookup[i][property]; if (pt && pt.d && pt.d._pt) { // it's a plugin, so find the nested PropTween pt = pt.d._pt; while (pt && pt.p !== property && pt.fp !== property) { // "fp" is functionParam for things like setting CSS variables which require .setProperty("--var-name", value) pt = pt._next; } } if (!pt) { // there is no PropTween associated with that property, so we must FORCE one to be created and ditch out of this // if the tween has other properties that already rendered at new positions, we'd normally have to rewind to put them back like tween.render(0, true) before forcing an _initTween(), but that can create another edge case like tweening a timeline's progress would trigger onUpdates to fire which could move other things around. It's better to just inform users that .resetTo() should ONLY be used for tweens that already have that property. For example, you can't gsap.to(...{ y: 0 }) and then tween.restTo("x", 200) for example. _forceAllPropTweens = 1; // otherwise, when we _addPropTween() and it finds no change between the start and end values, it skips creating a PropTween (for efficiency...why tween when there's no difference?) but in this case we NEED that PropTween created so we can edit it. tween.vars[property] = "+=0"; _initTween(tween, time); _forceAllPropTweens = 0; return 1; } ptCache.push(pt); } } i = ptCache.length; while (i--) { rootPT = ptCache[i]; pt = rootPT._pt || rootPT; // complex values may have nested PropTweens. We only accommodate the FIRST value. pt.s = (start || start === 0) && !startIsRelative ? start : pt.s + (start || 0) + ratio * pt.c; pt.c = value - pt.s; rootPT.e && (rootPT.e = _round(value) + getUnit(rootPT.e)); // mainly for CSSPlugin (end value) rootPT.b && (rootPT.b = pt.s + getUnit(rootPT.b)); // (beginning value) } }, _addAliasesToVars = (targets, vars) => { let harness = targets[0] ? _getCache(targets[0]).harness : 0, propertyAliases = (harness && harness.aliases), copy, p, i, aliases; if (!propertyAliases) { return vars; } copy = _merge({}, vars); for (p in propertyAliases) { if (p in copy) { aliases = propertyAliases[p].split(","); i = aliases.length; while(i--) { copy[aliases[i]] = copy[p]; } } } return copy; }, // parses multiple formats, like {"0%": {x: 100}, {"50%": {x: -20}} and { x: {"0%": 100, "50%": -20} }, and an "ease" can be set on any object. We populate an "allProps" object with an Array for each property, like {x: [{}, {}], y:[{}, {}]} with data for each property tween. The objects have a "t" (time), "v", (value), and "e" (ease) property. This allows us to piece together a timeline later. _parseKeyframe = (prop, obj, allProps, easeEach) => { let ease = obj.ease || easeEach || "power1.inOut", p, a; if (_isArray(obj)) { a = allProps[prop] || (allProps[prop] = []); // t = time (out of 100), v = value, e = ease obj.forEach((value, i) => a.push({t: i / (obj.length - 1) * 100, v: value, e: ease})); } else { for (p in obj) { a = allProps[p] || (allProps[p] = []); p === "ease" || a.push({t: parseFloat(prop), v: obj[p], e: ease}); } } }, _parseFuncOrString = (value, tween, i, target, targets) => (_isFunction(value) ? value.call(tween, i, target, targets) : (_isString(value) && ~value.indexOf("random(")) ? _replaceRandom(value) : value), _staggerTweenProps = _callbackNames + "repeat,repeatDelay,yoyo,repeatRefresh,yoyoEase,autoRevert", _staggerPropsToSkip = {}; _forEachName(_staggerTweenProps + ",id,stagger,delay,duration,paused,scrollTrigger", name => _staggerPropsToSkip[name] = 1); /* * -------------------------------------------------------------------------------------- * TWEEN * -------------------------------------------------------------------------------------- */ export class Tween extends Animation { constructor(targets, vars, position, skipInherit) { if (typeof(vars) === "number") { position.duration = vars; vars = position; position = null; } super(skipInherit ? vars : _inheritDefaults(vars)); let { duration, delay, immediateRender, stagger, overwrite, keyframes, defaults, scrollTrigger, yoyoEase } = this.vars, parent = vars.parent || _globalTimeline, parsedTargets = (_isArray(targets) || _isTypedArray(targets) ? _isNumber(targets[0]) : ("length" in vars)) ? [targets] : toArray(targets), // edge case: someone might try animating the "length" of an object with a "length" property that's initially set to 0 so don't interpret that as an empty Array-like object. tl, i, copy, l, p, curTarget, staggerFunc, staggerVarsToMerge; this._targets = parsedTargets.length ? _harness(parsedTargets) : _warn("GSAP target " + targets + " not found. https://greensock.com", !_config.nullTargetWarn) || []; this._ptLookup = []; //PropTween lookup. An array containing an object for each target, having keys for each tweening property this._overwrite = overwrite; if (keyframes || stagger || _isFuncOrString(duration) || _isFuncOrString(delay)) { vars = this.vars; tl = this.timeline = new Timeline({data: "nested", defaults: defaults || {}, targets: parent && parent.data === "nested" ? parent.vars.targets : parsedTargets}); // we need to store the targets because for staggers and keyframes, we end up creating an individual tween for each but function-based values need to know the index and the whole Array of targets. tl.kill(); tl.parent = tl._dp = this; tl._start = 0; if (stagger || _isFuncOrString(duration) || _isFuncOrString(delay)) { l = parsedTargets.length; staggerFunc = stagger && distribute(stagger); if (_isObject(stagger)) { //users can pass in callbacks like onStart/onComplete in the stagger object. These should fire with each individual tween. for (p in stagger) { if (~_staggerTweenProps.indexOf(p)) { staggerVarsToMerge || (staggerVarsToMerge = {}); staggerVarsToMerge[p] = stagger[p]; } } } for (i = 0; i < l; i++) { copy = _copyExcluding(vars, _staggerPropsToSkip); copy.stagger = 0; yoyoEase && (copy.yoyoEase = yoyoEase); staggerVarsToMerge && _merge(copy, staggerVarsToMerge); curTarget = parsedTargets[i]; //don't just copy duration or delay because if they're a string or function, we'd end up in an infinite loop because _isFuncOrString() would evaluate as true in the child tweens, entering this loop, etc. So we parse the value straight from vars and default to 0. copy.duration = +_parseFuncOrString(duration, this, i, curTarget, parsedTargets); copy.delay = (+_parseFuncOrString(delay, this, i, curTarget, parsedTargets) || 0) - this._delay; if (!stagger && l === 1 && copy.delay) { // if someone does delay:"random(1, 5)", repeat:-1, for example, the delay shouldn't be inside the repeat. this._delay = delay = copy.delay; this._start += delay; copy.delay = 0; } tl.to(curTarget, copy, staggerFunc ? staggerFunc(i, curTarget, parsedTargets) : 0); tl._ease = _easeMap.none; } tl.duration() ? (duration = delay = 0) : (this.timeline = 0); // if the timeline's duration is 0, we don't need a timeline internally! } else if (keyframes) { _inheritDefaults(_setDefaults(tl.vars.defaults, {ease:"none"})); tl._ease = _parseEase(keyframes.ease || vars.ease || "none"); let time = 0, a, kf, v; if (_isArray(keyframes)) { keyframes.forEach(frame => tl.to(parsedTargets, frame, ">")); tl.duration(); // to ensure tl._dur is cached because we tap into it for performance purposes in the render() method. } else { copy = {}; for (p in keyframes) { p === "ease" || p === "easeEach" || _parseKeyframe(p, keyframes[p], copy, keyframes.easeEach); } for (p in copy) { a = copy[p].sort((a, b) => a.t - b.t); time = 0; for (i = 0; i < a.length; i++) { kf = a[i]; v = {ease: kf.e, duration: (kf.t - (i ? a[i - 1].t : 0)) / 100 * duration}; v[p] = kf.v; tl.to(parsedTargets, v, time); time += v.duration; } } tl.duration() < duration && tl.to({}, {duration: duration - tl.duration()}); // in case keyframes didn't go to 100% } } duration || this.duration((duration = tl.duration())); } else { this.timeline = 0; //speed optimization, faster lookups (no going up the prototype chain) } if (overwrite === true && !_suppressOverwrites) { _overwritingTween = this; _globalTimeline.killTweensOf(parsedTargets); _overwritingTween = 0; } _addToTimeline(parent, this, position); vars.reversed && this.reverse(); vars.paused && this.paused(true); if (immediateRender || (!duration && !keyframes && this._start === _roundPrecise(parent._time) && _isNotFalse(immediateRender) && _hasNoPausedAncestors(this) && parent.data !== "nested")) { this._tTime = -_tinyNum; //forces a render without having to set the render() "force" parameter to true because we want to allow lazying by default (using the "force" parameter always forces an immediate full render) this.render(Math.max(0, -delay) || 0); //in case delay is negative } scrollTrigger && _scrollTrigger(this, scrollTrigger); } render(totalTime, suppressEvents, force) { let prevTime = this._time, tDur = this._tDur, dur = this._dur, isNegative = totalTime < 0, tTime = (totalTime > tDur - _tinyNum && !isNegative) ? tDur : (totalTime < _tinyNum) ? 0 : totalTime, time, pt, iteration, cycleDuration, prevIteration, isYoyo, ratio, timeline, yoyoEase; if (!dur) { _renderZeroDurationTween(this, totalTime, suppressEvents, force); } else if (tTime !== this._tTime || !totalTime || force || (!this._initted && this._tTime) || (this._startAt && (this._zTime < 0) !== isNegative)) { //this senses if we're crossing over the start time, in which case we must record _zTime and force the render, but we do it in this lengthy conditional way for performance reasons (usually we can skip the calculations): this._initted && (this._zTime < 0) !== (totalTime < 0) time = tTime; timeline = this.timeline; if (this._repeat) { //adjust the time for repeats and yoyos cycleDuration = dur + this._rDelay; if (this._repeat < -1 && isNegative) { return this.totalTime(cycleDuration * 100 + totalTime, suppressEvents, force); } time = _roundPrecise(tTime % cycleDuration); //round to avoid floating point errors. (4 % 0.8 should be 0 but some browsers report it as 0.79999999!) if (tTime === tDur) { // the tDur === tTime is for edge cases where there's a lengthy decimal on the duration and it may reach the very end but the time is rendered as not-quite-there (remember, tDur is rounded to 4 decimals whereas dur isn't) iteration = this._repeat; time = dur; } else { iteration = ~~(tTime / cycleDuration); if (iteration && iteration === tTime / cycleDuration) { time = dur; iteration--; } time > dur && (time = dur); } isYoyo = this._yoyo && (iteration & 1); if (isYoyo) { yoyoEase = this._yEase; time = dur - time; } prevIteration = _animationCycle(this._tTime, cycleDuration); if (time === prevTime && !force && this._initted) { //could be during the repeatDelay part. No need to render and fire callbacks. this._tTime = tTime; return this; } if (iteration !== prevIteration) { timeline && this._yEase && _propagateYoyoEase(timeline, isYoyo); //repeatRefresh functionality if (this.vars.repeatRefresh && !isYoyo && !this._lock) { this._lock = force = 1; //force, otherwise if lazy is true, the _attemptInitTween() will return and we'll jump out and get caught bouncing on each tick. this.render(_roundPrecise(cycleDuration * iteration), true).invalidate()._lock = 0; } } } if (!this._initted) { if (_attemptInitTween(this, isNegative ? totalTime : time, force, suppressEvents, tTime)) { this._tTime = 0; // in constructor if immediateRender is true, we set _tTime to -_tinyNum to have the playhead cross the starting point but we can't leave _tTime as a negative number. return this; } if (prevTime !== this._time) { // rare edge case - during initialization, an onUpdate in the _startAt (.fromTo()) might force this tween to render at a different spot in which case we should ditch this render() call so that it doesn't revert the values. return this; } if (dur !== this._dur) { // while initting, a plugin like InertiaPlugin might alter the duration, so rerun from the start to ensure everything renders as it should. return this.render(totalTime, suppressEvents, force); } } this._tTime = tTime; this._time = time; if (!this._act && this._ts) { this._act = 1; //as long as it's not paused, force it to be active so that if the user renders independent of the parent timeline, it'll be forced to re-render on the next tick. this._lazy = 0; } this.ratio = ratio = (yoyoEase || this._ease)(time / dur); if (this._from) { this.ratio = ratio = 1 - ratio; } if (time && !prevTime && !suppressEvents && !iteration) { _callback(this, "onStart"); if (this._tTime !== tTime) { // in case the onStart triggered a render at a different spot, eject. Like if someone did animation.pause(0.5) or something inside the onStart. return this; } } pt = this._pt; while (pt) { pt.r(ratio, pt.d); pt = pt._next; } (timeline && timeline.render(totalTime < 0 ? totalTime : !time && isYoyo ? -_tinyNum : timeline._dur * timeline._ease(time / this._dur), suppressEvents, force)) || (this._startAt && (this._zTime = totalTime)); if (this._onUpdate && !suppressEvents) { isNegative && _rewindStartAt(this, totalTime, suppressEvents, force); //note: for performance reasons, we tuck this conditional logic inside less traveled areas (most tweens don't have an onUpdate). We'd just have it at the end before the onComplete, but the values should be updated before any onUpdate is called, so we ALSO put it here and then if it's not called, we do so later near the onComplete. _callback(this, "onUpdate"); } this._repeat && iteration !== prevIteration && this.vars.onRepeat && !suppressEvents && this.parent && _callback(this, "onRepeat"); if ((tTime === this._tDur || !tTime) && this._tTime === tTime) { isNegative && !this._onUpdate && _rewindStartAt(this, totalTime, true, true); (totalTime || !dur) && ((tTime === this._tDur && this._ts > 0) || (!tTime && this._ts < 0)) && _removeFromParent(this, 1); // don't remove if we're rendering at exactly a time of 0, as there could be autoRevert values that should get set on the next tick (if the playhead goes backward beyond the startTime, negative totalTime). Don't remove if the timeline is reversed and the playhead isn't at 0, otherwise tl.progress(1).reverse() won't work. Only remove if the playhead is at the end and timeScale is positive, or if the playhead is at 0 and the timeScale is negative. if (!suppressEvents && !(isNegative && !prevTime) && (tTime || prevTime || isYoyo)) { // if prevTime and tTime are zero, we shouldn't fire the onReverseComplete. This could happen if you gsap.to(... {paused:true}).play(); _callback(this, (tTime === tDur ? "onComplete" : "onReverseComplete"), true); this._prom && !(tTime < tDur && this.timeScale() > 0) && this._prom(); } } } return this; } targets() { return this._targets; } invalidate(soft) { // "soft" gives us a way to clear out everything EXCEPT the recorded pre-"from" portion of from() tweens. Otherwise, for example, if you tween.progress(1).render(0, true true).invalidate(), the "from" values would persist and then on the next render, the from() tweens would initialize and the current value would match the "from" values, thus animate from the same value to the same value (no animation). We tap into this in ScrollTrigger's refresh() where we must push a tween to completion and then back again but honor its init state in case the tween is dependent on another tween further up on the page. (!soft || !this.vars.runBackwards) && (this._startAt = 0) this._pt = this._op = this._onUpdate = this._lazy = this.ratio = 0; this._ptLookup = []; this.timeline && this.timeline.invalidate(soft); return super.invalidate(soft); } resetTo(property, value, start, startIsRelative) { _tickerActive || _ticker.wake(); this._ts || this.play(); let time = Math.min(this._dur, (this._dp._time - this._start) * this._ts), ratio; this._initted || _initTween(this, time); ratio = this._ease(time / this._dur); // don't just get tween.ratio because it may not have rendered yet. // possible future addition to allow an object with multiple values to update, like tween.resetTo({x: 100, y: 200}); At this point, it doesn't seem worth the added kb given the fact that most users will likely opt for the convenient gsap.quickTo() way of interacting with this method. // if (_isObject(property)) { // performance optimization // for (p in property) { // if (_updatePropTweens(this, p, property[p], value ? value[p] : null, start, ratio, time)) { // return this.resetTo(property, value, start, startIsRelative); // if a PropTween wasn't found for the property, it'll get forced with a re-initialization so we need to jump out and start over again. // } // } // } else { if (_updatePropTweens(this, property, value, start, startIsRelative, ratio, time)) { return this.resetTo(property, value, start, startIsRelative); // if a PropTween wasn't found for the property, it'll get forced with a re-initialization so we need to jump out and start over again. } //} _alignPlayhead(this, 0); this.parent || _addLinkedListItem(this._dp, this, "_first", "_last", this._dp._sort ? "_start" : 0); return this.render(0); } kill(targets, vars = "all") { if (!targets && (!vars || vars === "all")) { this._lazy = this._pt = 0; return this.parent ? _interrupt(this) : this; } if (this.timeline) { let tDur = this.timeline.totalDuration(); this.timeline.killTweensOf(targets, vars, _overwritingTween && _overwritingTween.vars.overwrite !== true)._first || _interrupt(this); // if nothing is left tweening, interrupt. this.parent && tDur !== this.timeline.totalDuration() && _setDuration(this, this._dur * this.timeline._tDur / tDur, 0, 1); // if a nested tween is killed that changes the duration, it should affect this tween's duration. We must use the ratio, though, because sometimes the internal timeline is stretched like for keyframes where they don't all add up to whatever the parent tween's duration was set to. return this; } let parsedTargets = this._targets, killingTargets = targets ? toArray(targets) : parsedTargets, propTweenLookup = this._ptLookup, firstPT = this._pt, overwrittenProps, curLookup, curOverwriteProps, props, p, pt, i; if ((!vars || vars === "all") && _arraysMatch(parsedTargets, killingTargets)) { vars === "all" && (this._pt = 0); return _interrupt(this); } overwrittenProps = this._op = this._op || []; if (vars !== "all") { //so people can pass in a comma-delimited list of property names if (_isString(vars)) { p = {}; _forEachName(vars, name => p[name] = 1); vars = p; } vars = _addAliasesToVars(parsedTargets, vars); } i = parsedTargets.length; while (i--) { if (~killingTargets.indexOf(parsedTargets[i])) { curLookup = propTweenLookup[i]; if (vars === "all") { overwrittenProps[i] = vars; props = curLookup; curOverwriteProps = {}; } else { curOverwriteProps = overwrittenProps[i] = overwrittenProps[i] || {}; props = vars; } for (p in props) { pt = curLookup && curLookup[p]; if (pt) { if (!("kill" in pt.d) || pt.d.kill(p) === true) { _removeLinkedListItem(this, pt, "_pt"); } delete curLookup[p]; } if (curOverwriteProps !== "all") { curOverwriteProps[p] = 1; } } } } this._initted && !this._pt && firstPT && _interrupt(this); //if all tweening properties are killed, kill the tween. Without this line, if there's a tween with multiple targets and then you killTweensOf() each target individually, the tween would technically still remain active and fire its onComplete even though there aren't any more properties tweening. return this; } static to(targets, vars) { return new Tween(targets, vars, arguments[2]); } static from(targets, vars) { return _createTweenType(1, arguments); } static delayedCall(delay, callback, params, scope) { return new Tween(callback, 0, {immediateRender:false, lazy:false, overwrite:false, delay:delay, onComplete:callback, onReverseComplete:callback, onCompleteParams:params, onReverseCompleteParams:params, callbackScope:scope}); // we must use onReverseComplete too for things like timeline.add(() => {...}) which should be triggered in BOTH directions (forward and reverse) } static fromTo(targets, fromVars, toVars) { return _createTweenType(2, arguments); } static set(targets, vars) { vars.duration = 0; vars.repeatDelay || (vars.repeat = 0); return new Tween(targets, vars); } static killTweensOf(targets, props, onlyActive) { return _globalTimeline.killTweensOf(targets, props, onlyActive); } } _setDefaults(Tween.prototype, {_targets:[], _lazy:0, _startAt:0, _op:0, _onInit:0}); //add the pertinent timeline methods to Tween instances so that users can chain conveniently and create a timeline automatically. (removed due to concerns that it'd ultimately add to more confusion especially for beginners) // _forEachName("to,from,fromTo,set,call,add,addLabel,addPause", name => { // Tween.prototype[name] = function() { // let tl = new Timeline(); // return _addToTimeline(tl, this)[name].apply(tl, toArray(arguments)); // } // }); //for backward compatibility. Leverage the timeline calls. _forEachName("staggerTo,staggerFrom,staggerFromTo", name => { Tween[name] = function() { let tl = new Timeline(), params = _slice.call(arguments, 0); params.splice(name === "staggerFromTo" ? 5 : 4, 0, 0); return tl[name].apply(tl, params); } }); /* * -------------------------------------------------------------------------------------- * PROPTWEEN * -------------------------------------------------------------------------------------- */ let _setterPlain = (target, property, value) => target[property] = value, _setterFunc = (target, property, value) => target[property](value), _setterFuncWithParam = (target, property, value, data) => target[property](data.fp, value), _setterAttribute = (target, property, value) => target.setAttribute(property, value), _getSetter = (target, property) => _isFunction(target[property]) ? _setterFunc : _isUndefined(target[property]) && target.setAttribute ? _setterAttribute : _setterPlain, _renderPlain = (ratio, data) => data.set(data.t, data.p, Math.round((data.s + data.c * ratio) * 1000000) / 1000000, data), _renderBoolean = (ratio, data) => data.set(data.t, data.p, !!(data.s + data.c * ratio), data), _renderComplexString = function(ratio, data) { let pt = data._pt, s = ""; if (!ratio && data.b) { //b = beginning string s = data.b; } else if (ratio === 1 && data.e) { //e = ending string s = data.e; } else { while (pt) { s = pt.p + (pt.m ? pt.m(pt.s + pt.c * ratio) : (Math.round((pt.s + pt.c * ratio) * 10000) / 10000)) + s; //we use the "p" property for the text inbetween (like a suffix). And in the context of a complex string, the modifier (m) is typically just Math.round(), like for RGB colors. pt = pt._next; } s += data.c; //we use the "c" of the PropTween to store the final chunk of non-numeric text. } data.set(data.t, data.p, s, data); }, _renderPropTweens = function(ratio, data) { let pt = data._pt; while (pt) { pt.r(ratio, pt.d); pt = pt._next; } }, _addPluginModifier = function(modifier, tween, target, property) { let pt = this._pt, next; while (pt) { next = pt._next; pt.p === property && pt.modifier(modifier, tween, target); pt = next; } }, _killPropTweensOf = function(property) { let pt = this._pt, hasNonDependentRemaining, next; while (pt) { next = pt._next; if ((pt.p === property && !pt.op) || pt.op === property) { _removeLinkedListItem(this, pt, "_pt"); } else if (!pt.dep) { hasNonDependentRemaining = 1; } pt = next; } return !hasNonDependentRemaining; }, _setterWithModifier = (target, property, value, data) => { data.mSet(target, property, data.m.call(data.tween, value, data.mt), data); }, _sortPropTweensByPriority = parent => { let pt = parent._pt, next, pt2, first, last; //sorts the PropTween linked list in order of priority because some plugins need to do their work after ALL of the PropTweens were created (like RoundPropsPlugin and ModifiersPlugin) while (pt) { next = pt._next; pt2 = first; while (pt2 && pt2.pr > pt.pr) { pt2 = pt2._next; } if ((pt._prev = pt2 ? pt2._prev : last)) { pt._prev._next = pt; } else { first = pt; } if ((pt._next = pt2)) { pt2._prev = pt; } else { last = pt; } pt = next; } parent._pt = first; }; //PropTween key: t = target, p = prop, r = renderer, d = data, s = start, c = change, op = overwriteProperty (ONLY populated when it's different than p), pr = priority, _next/_prev for the linked list siblings, set = setter, m = modifier, mSet = modifierSetter (the original setter, before a modifier was added) export class PropTween { constructor(next, target, prop, start, change, renderer, data, setter, priority) { this.t = target; this.s = start; this.c = change; this.p = prop; this.r = renderer || _renderPlain; this.d = data || this; this.set = setter || _setterPlain; this.pr = priority || 0; this._next = next; if (next) { next._prev = this; } } modifier(func, tween, target) { this.mSet = this.mSet || this.set; //in case it was already set (a PropTween can only have one modifier) this.set = _setterWithModifier; this.m = func; this.mt = target; //modifier target this.tween = tween; } } //Initialization tasks _forEachName(_callbackNames + "parent,duration,ease,delay,overwrite,runBackwards,startAt,yoyo,immediateRender,repeat,repeatDelay,data,paused,reversed,lazy,callbackScope,stringFilter,id,yoyoEase,stagger,inherit,repeatRefresh,keyframes,autoRevert,scrollTrigger", name => _reservedProps[name] = 1); _globals.TweenMax = _globals.TweenLite = Tween; _globals.TimelineLite = _globals.TimelineMax = Timeline; _globalTimeline = new Timeline({sortChildren: false, defaults: _defaults, autoRemoveChildren: true, id:"root", smoothChildTiming: true}); _config.stringFilter = _colorStringFilter; let _media = [], _listeners = {}, _emptyArray = [], _lastMediaTime = 0, _contextID = 0, _dispatch = type => (_listeners[type] || _emptyArray).map(f => f()), _onMediaChange = () => { let time = Date.now(), matches = []; if (time - _lastMediaTime > 2) { _dispatch("matchMediaInit"); _media.forEach(c => { let queries = c.queries, conditions = c.conditions, match, p, anyMatch, toggled; for (p in queries) { match = _win.matchMedia(queries[p]).matches; // Firefox doesn't update the "matches" property of the MediaQueryList object correctly - it only does so as it calls its change handler - so we must re-create a media query here to ensure it's accurate. match && (anyMatch = 1); if (match !== conditions[p]) { conditions[p] = match; toggled = 1; } } if (toggled) { c.revert(); anyMatch && matches.push(c); } }); _dispatch("matchMediaRevert"); matches.forEach(c => c.onMatch(c)); _lastMediaTime = time; _dispatch("matchMedia"); } }; class Context { constructor(func, scope) { this.selector = scope && selector(scope); this.data = []; this._r = []; // returned/cleanup functions this.isReverted = false; this.id = _contextID++; // to work around issues that frameworks like Vue cause by making things into Proxies which make it impossible to do something like _media.indexOf(this) because "this" would no longer refer to the Context instance itself - it'd refer to a Proxy! We needed a way to identify the context uniquely func && this.add(func); } add(name, func, scope) { // possible future addition if we need the ability to add() an animation to a context and for whatever reason cannot create that animation inside of a context.add(() => {...}) function. // if (name && _isFunction(name.revert)) { // this.data.push(name); // return (name._ctx = this); // } if (_isFunction(name)) { scope = func; func = name; name = _isFunction; } let self = this, f = function() { let prev = _context, prevSelector = self.selector, result; prev && prev !== self && prev.data.push(self); scope && (self.selector = selector(scope)); _context = self; result = func.apply(self, arguments); _isFunction(result) && self._r.push(result); _context = prev; self.selector = prevSelector; self.isReverted = false; return result; }; self.last = f; return name === _isFunction ? f(self) : name ? (self[name] = f) : f; } ignore(func) { let prev = _context; _context = null; func(this); _context = prev; } getTweens() { let a = []; this.data.forEach(e => (e instanceof Context) ? a.push(...e.getTweens()) : (e instanceof Tween) && !(e.parent && e.parent.data === "nested") && a.push(e)); return a; } clear() { this._r.length = this.data.length = 0; } kill(revert, matchMedia) { if (revert) { let tweens = this.getTweens(); this.data.forEach(t => { // Flip plugin tweens are very different in that they should actually be pushed to their end. The plugin replaces the timeline's .revert() method to do exactly that. But we also need to remove any of those nested tweens inside the flip timeline so that they don't get individually reverted. if (t.data === "isFlip") { t.revert(); t.getChildren(true, true, false).forEach(tween => tweens.splice(tweens.indexOf(tween), 1)); } }); // save as an object so that we can cache the globalTime for each tween to optimize performance during the sort tweens.map(t => { return {g: t.globalTime(0), t}}).sort((a, b) => b.g - a.g || -Infinity).forEach(o => o.t.revert(revert)); // note: all of the _startAt tweens should be reverted in reverse order that they were created, and they'll all have the same globalTime (-1) so the " || -1" in the sort keeps the order properly. this.data.forEach(e => !(e instanceof Tween) && e.revert && e.revert(revert)); this._r.forEach(f => f(revert, this)); this.isReverted = true; } else { this.data.forEach(e => e.kill && e.kill()); } this.clear(); if (matchMedia) { let i = _media.length; while (i--) { // previously, we checked _media.indexOf(this), but some frameworks like Vue enforce Proxy objects that make it impossible to get the proper result that way, so we must use a unique ID number instead. _media[i].id === this.id && _media.splice(i, 1); } } } revert(config) { this.kill(config || {}); } } class MatchMedia { constructor(scope) { this.contexts = []; this.scope = scope; } add(conditions, func, scope) { _isObject(conditions) || (conditions = {matches: conditions}); let context = new Context(0, scope || this.scope), cond = context.conditions = {}, mq, p, active; _context && !context.selector && (context.selector = _context.selector); // in case a context is created inside a context. Like a gsap.matchMedia() that's inside a scoped gsap.context() this.contexts.push(context); func = context.add("onMatch", func); context.queries = conditions; for (p in conditions) { if (p === "all") { active = 1; } else { mq = _win.matchMedia(conditions[p]); if (mq) { _media.indexOf(context) < 0 && _media.push(context); (cond[p] = mq.matches) && (active = 1); mq.addListener ? mq.addListener(_onMediaChange) : mq.addEventListener("change", _onMediaChange); } } } active && func(context); return this; } // refresh() { // let time = _lastMediaTime, // media = _media; // _lastMediaTime = -1; // _media = this.contexts; // _onMediaChange(); // _lastMediaTime = time; // _media = media; // } revert(config) { this.kill(config || {}); } kill(revert) { this.contexts.forEach(c => c.kill(revert, true)); } } /* * -------------------------------------------------------------------------------------- * GSAP * -------------------------------------------------------------------------------------- */ const _gsap = { registerPlugin(...args) { args.forEach(config => _createPlugin(config)); }, timeline(vars) { return new Timeline(vars); }, getTweensOf(targets, onlyActive) { return _globalTimeline.getTweensOf(targets, onlyActive); }, getProperty(target, property, unit, uncache) { _isString(target) && (target = toArray(target)[0]); //in case selector text or an array is passed in let getter = _getCache(target || {}).get, format = unit ? _passThrough : _numericIfPossible; unit === "native" && (unit = ""); return !target ? target : !property ? (property, unit, uncache) => format(((_plugins[property] && _plugins[property].get) || getter)(target, property, unit, uncache)) : format(((_plugins[property] && _plugins[property].get) || getter)(target, property, unit, uncache)); }, quickSetter(target, property, unit) { target = toArray(target); if (target.length > 1) { let setters = target.map(t => gsap.quickSetter(t, property, unit)), l = setters.length; return value => { let i = l; while(i--) { setters[i](value); } } } target = target[0] || {}; let Plugin = _plugins[property], cache = _getCache(target), p = (cache.harness && (cache.harness.aliases || {})[property]) || property, // in case it's an alias, like "rotate" for "rotation". setter = Plugin ? value => { let p = new Plugin(); _quickTween._pt = 0; p.init(target, unit ? value + unit : value, _quickTween, 0, [target]); p.render(1, p); _quickTween._pt && _renderPropTweens(1, _quickTween); } : cache.set(target, p); return Plugin ? setter : value => setter(target, p, unit ? value + unit : value, cache, 1); }, quickTo(target, property, vars) { let tween = gsap.to(target, _merge({[property]: "+=0.1", paused: true}, vars || {})), func = (value, start, startIsRelative) => tween.resetTo(property, value, start, startIsRelative); func.tween = tween; return func; }, isTweening(targets) { return _globalTimeline.getTweensOf(targets, true).length > 0; }, defaults(value) { value && value.ease && (value.ease = _parseEase(value.ease, _defaults.ease)); return _mergeDeep(_defaults, value || {}); }, config(value) { return _mergeDeep(_config, value || {}); }, registerEffect({name, effect, plugins, defaults, extendTimeline}) { (plugins || "").split(",").forEach(pluginName => pluginName && !_plugins[pluginName] && !_globals[pluginName] && _warn(name + " effect requires " + pluginName + " plugin.")); _effects[name] = (targets, vars, tl) => effect(toArray(targets), _setDefaults(vars || {}, defaults), tl); if (extendTimeline) { Timeline.prototype[name] = function(targets, vars, position) { return this.add(_effects[name](targets, _isObject(vars) ? vars : (position = vars) && {}, this), position); }; } }, registerEase(name, ease) { _easeMap[name] = _parseEase(ease); }, parseEase(ease, defaultEase) { return arguments.length ? _parseEase(ease, defaultEase) : _easeMap; }, getById(id) { return _globalTimeline.getById(id); }, exportRoot(vars = {}, includeDelayedCalls) { let tl = new Timeline(vars), child, next; tl.smoothChildTiming = _isNotFalse(vars.smoothChildTiming); _globalTimeline.remove(tl); tl._dp = 0; //otherwise it'll get re-activated when adding children and be re-introduced into _globalTimeline's linked list (then added to itself). tl._time = tl._tTime = _globalTimeline._time; child = _globalTimeline._first; while (child) { next = child._next; if (includeDelayedCalls || !(!child._dur && child instanceof Tween && child.vars.onComplete === child._targets[0])) { _addToTimeline(tl, child, child._start - child._delay); } child = next; } _addToTimeline(_globalTimeline, tl, 0); return tl; }, context: (func, scope) => func ? new Context(func, scope) : _context, matchMedia: scope => new MatchMedia(scope), matchMediaRefresh: () => _media.forEach(c => { let cond = c.conditions, found, p; for (p in cond) { if (cond[p]) { cond[p] = false; found = 1; } } found && c.revert(); }) || _onMediaChange(), addEventListener(type, callback) { let a = _listeners[type] || (_listeners[type] = []); ~a.indexOf(callback) || a.push(callback); }, removeEventListener(type, callback) { let a = _listeners[type], i = a && a.indexOf(callback); i >= 0 && a.splice(i, 1); }, utils: { wrap, wrapYoyo, distribute, random, snap, normalize, getUnit, clamp, splitColor, toArray, selector, mapRange, pipe, unitize, interpolate, shuffle }, install: _install, effects: _effects, ticker: _ticker, updateRoot: Timeline.updateRoot, plugins: _plugins, globalTimeline: _globalTimeline, core: {PropTween, globals: _addGlobal, Tween, Timeline, Animation, getCache: _getCache, _removeLinkedListItem, reverting: () => _reverting, context: toAdd => {if (toAdd && _context) { _context.data.push(toAdd); toAdd._ctx = _context} return _context; }, suppressOverwrites: value => _suppressOverwrites = value} }; _forEachName("to,from,fromTo,delayedCall,set,killTweensOf", name => _gsap[name] = Tween[name]); _ticker.add(Timeline.updateRoot); _quickTween = _gsap.to({}, {duration:0}); // ---- EXTRA PLUGINS -------------------------------------------------------- let _getPluginPropTween = (plugin, prop) => { let pt = plugin._pt; while (pt && pt.p !== prop && pt.op !== prop && pt.fp !== prop) { pt = pt._next; } return pt; }, _addModifiers = (tween, modifiers) => { let targets = tween._targets, p, i, pt; for (p in modifiers) { i = targets.length; while (i--) { pt = tween._ptLookup[i][p]; if (pt && (pt = pt.d)) { if (pt._pt) { // is a plugin pt = _getPluginPropTween(pt, p); } pt && pt.modifier && pt.modifier(modifiers[p], tween, targets[i], p); } } } }, _buildModifierPlugin = (name, modifier) => { return { name: name, rawVars: 1, //don't pre-process function-based values or "random()" strings. init(target, vars, tween) { tween._onInit = tween => { let temp, p; if (_isString(vars)) { temp = {}; _forEachName(vars, name => temp[name] = 1); //if the user passes in a comma-delimited list of property names to roundProps, like "x,y", we round to whole numbers. vars = temp; } if (modifier) { temp = {}; for (p in vars) { temp[p] = modifier(vars[p]); } vars = temp; } _addModifiers(tween, vars); }; } }; }; //register core plugins export const gsap = _gsap.registerPlugin({ name:"attr", init(target, vars, tween, index, targets) { let p, pt, v; this.tween = tween; for (p in vars) { v = target.getAttribute(p) || ""; pt = this.add(target, "setAttribute", (v || 0) + "", vars[p], index, targets, 0, 0, p); pt.op = p; pt.b = v; // record the beginning value so we can revert() this._props.push(p); } }, render(ratio, data) { let pt = data._pt; while (pt) { _reverting ? pt.set(pt.t, pt.p, pt.b, pt) : pt.r(ratio, pt.d); // if reverting, go back to the original (pt.b) pt = pt._next; } } }, { name:"endArray", init(target, value) { let i = value.length; while (i--) { this.add(target, i, target[i] || 0, value[i], 0, 0, 0, 0, 0, 1); } } }, _buildModifierPlugin("roundProps", _roundModifier), _buildModifierPlugin("modifiers"), _buildModifierPlugin("snap", snap) ) || _gsap; //to prevent the core plugins from being dropped via aggressive tree shaking, we must include them in the variable declaration in this way. Tween.version = Timeline.version = gsap.version = "3.12.2"; _coreReady = 1; _windowExists() && _wake(); export const { Power0, Power1, Power2, Power3, Power4, Linear, Quad, Cubic, Quart, Quint, Strong, Elastic, Back, SteppedEase, Bounce, Sine, Expo, Circ } = _easeMap; export { Tween as TweenMax, Tween as TweenLite, Timeline as TimelineMax, Timeline as TimelineLite, gsap as default, wrap, wrapYoyo, distribute, random, snap, normalize, getUnit, clamp, splitColor, toArray, selector, mapRange, pipe, unitize, interpolate, shuffle }; //export some internal methods/orojects for use in CSSPlugin so that we can externalize that file and allow custom builds that exclude it. export { _getProperty, _numExp, _numWithUnitExp, _isString, _isUndefined, _renderComplexString, _relExp, _setDefaults, _removeLinkedListItem, _forEachName, _sortPropTweensByPriority, _colorStringFilter, _replaceRandom, _checkPlugin, _plugins, _ticker, _config, _roundModifier, _round, _missingPlugin, _getSetter, _getCache, _colorExp, _parseRelative }